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In this paper, we propose an expert system foatitg¥ requirements engineering using
Formal Concept Analysis. The requirements engingempproach is grounded in the
theoretical framework of C-K theory. An essentiesult of this approach is that we obtain
normalized class models. Compared to traditional LUMass models, these normalized
models are free of ambiguities such as many-to-mapyional-to-optional or reflexive
associations which cause amongst others problerdesagn time. FCA has the benefit of
providing a partial ordering of the objects in tenceptual model based on the use cases in
which they participate. The four operators of th& @esign square give a clear structure to
the requirements engineering process: elaboragiemfication, modification and validation.
In each of these steps the FCA lattice visualiragitays a pivotal role. We empirically show
how the strategy works by applying it to a set@agec studies and a modeling experiment in
which 20 students took part.

1. Introduction

During the conceptual modeling phase, user req@nesnare represented in a specification of
what the system does as if there were a perfeclemmgntation technology available
(McMenamin et al. 1984). This is not a model of hawimplementation works but of what
an implementation must accomplish. Use cases andathceptual domain model are the most
important artifacts resulting from this phase. A& @sse is a system usage scenario involving
one or more actors and the purpose of a use caséisation is to describe the flow of events
in detail including how the use case starts, emislifies the system and interacts with actors.
By analyzing the domain of interest, identifyingdamodeling relevant entities and
relationships we obtain the conceptual domain mdde(Lindland et al. 1994) a framework
is presented for evaluating the quality of concaptaodels. A distinction is made between
syntactic and semantic quality. Several method<s Haeen introduced for detecting and
handling syntactic problems such as inconsistenZi&% of these techniques, such as model
checkers, theorem provers, coherence checkers,astcformal (Lucas et al. 2009) and
unfortunately not very popular in the industriafta@re development community (Beckert et
al. 2006). This unpopularity is usually due to thaet that these approaches are difficult for
modelers to use directly and that the feedback ttfiey, is usually poor and difficult for non-
experts to understand. Semantic validation of regquents and conceptual models is a social
rather than a technical process, which is inheyeniibjective and difficult to formalize (Vliet
et al. 2000). While some errors can be detectednaatically, most errors can only be
detected with the involvement of humans (Moody )%88ce a conceptual model can only be
evaluated against people's (tacit) needs, desieg¥pectations.

According to Wieringa et al. (2006) one of the deobs is that we miss sound
methodology that captures the essential elementequiirements engineering. The research
on requirements engineering and conceptual modetjinality which has been done so far
seems to have had little impact or practice (Mo2a¢5). Few of the proposals have been



widely accepted in practice and many have nevernbegplied outside a research
environment. Several authors claimed that reseescteed to address the issue of practitioner
acceptance (Kaindl et al. 2002, Moody 2003). Actwdto the literature on quality
management, the most effective way to improve tafi products is to improve the process
by which they are produced (Evans et al. 2004 )}agoconceptual modeling quality research
has focused almost exclusively on product qualieyy few proposals even mention the issue
of process quality (Maier et al. 1999, Maier et26101). In requirements engineering, we can
distinguish 4 broad categories of activities: elabon of requirements artifacts, syntactic
verification, modification of the model and validat of the semantics of the model with the
business users. We propose Formal Concept Angly§i8) as a human-centered and easily
understandable instrument to support the modelirey software system (Ganter et al. 1999,
Wille 1999). It is a technique for mathematicallgsdribing and visualizing concepts and their
interrelationships. In particular, the intuitivesual display was found to be of major
importance during a number of case studies and @eling case in which 20 students took
part. The lattice helped in stimulating conscioessoning over syntactic and semantic errors,
inconsistencies and different modeling choices tirate made. Amongst others, we gained
insight in missing objects, missing or faulty asgid operations, wrong dependencies,
alternative solutions, etc. FCA allows the usergason over the semantics, consistency and
relations among UML models. A lattice can autonsljcbe derived from an object - use
case interaction matrix and easily be transforméala UML class diagram. This class model
construction procedure based on FCA has the addltimdvantage of resulting in
“normalized” class diagrams. These models contanmore many-to-many relations, no
more optional-to-optional relations and no moréerate relations, leading to less ambiguous
class diagrams.

The requirements engineering process is framedhé @-K design science theory
(Hatchuel et al. 2003) and each of the four caiegaf activities can be mapped to one of the
four operators of the C-K design square. At theeanir the method are multiple successive
iterations through a learning loop. The actionabiermation in the K space, i.e. the use cases
and conceptual model, are transformed to an FCt#cdatvhich can be used for formal
verification of the model and proposing modificasoto the model. The results are feeded
back to the domain experts, and the semantic walidithe model is analyzed together with
the business user. The FCA lattices serve hereeaseunication instrument.

The remainder of this paper is composed as followssection 2 we introduce the
essentials of conceptual model quality and UML slasodel normalization. Section 3
discusses FCA, C-K theory and the relevance ofetheschniques in requirements
engineering. Section 4 shows how C-K theory carubed as a frame work for iterative
requirements engineering and the relevance is shemacwith multiple case studies. Section 5
describes a validation experiment. In section &teel work is presented. Finally, section 7
concludes the discussion.

2. Requirements engineering artifacts

2.1Use cases, conceptual domain model and quality

The quality of the end product depends greatly b& &ccuracy of the requirements
specification and developers are more and moreestrating on how to improve the early
stages of development. Both use cases and theoatenodel are important parts of early
development of a software system. According to ¢Belo et al. 2004), these requirements
models deserve special attention, since it is & rdquirements engineering phase where



substantial communication difficulties concentratel many defects may be introduced in the
artifacts. Use Cases were introduced in OOSE (Jacolet al. 1992) and describe the
interactions between the system and the extermaisaacSuch an interaction does not have to
be atomic and is usually decomposed into stepgatell in the use case specification. An
actor is a specific role played by a system usdrrapresents a category of users that share
similar behavior when using the system. By usersmvean both human beings as well as
external systems or devices communicating withstysgem. An actor is regarded as a class
and users as instances of this class. A use casesystem usage scenario involving one or
more actors and the purpose of a use case spéoifida to describe the flow of events in
detail, including how the use case starts, endsljfras the system and interacts with actors.
One of the major activities includes finding outieth classes the software will need in
order to satisfy the requirements described inuges cases. The behavior in a system should
be exactly that which is required to provide the wsse to the users of the system. A
conceptual model is a collection of concepts linkedether to form a model. Another
important step is the allocation of the requiredctionality to an entity or entities in the
conceptual model for each use case. For each stilded in the use case specifications, a
responsibility should be identified and allocatem dan entity. This is a complex but
unavoidable task (Insfran et al. 2002). One oflilygest challenges facing software projects
is determining when and how to begin the transifrom specifying requirements to working
on a system design (Reed 2002). Incomplete or iacbrequirements carry the risk of
formulating a design based on sketchy requiremént&indland et al. 1994), a framework is
presented for evaluating the quality of conceptumaldels. A distinction is made between
syntactic and semantic quality. Semantic qualsyés arise when the model lacks something
that the domain contains, or it can include sometithe domain does not have. In other
words, the more similar the model and the domé&ie,ktetter the semantic quality. The two
major semantic goals to be achieved are validity @@mpleteness. Validity means that all
statements made by the model are correct and relévahe problem. Completeness means
that the model contains all the statements ab@uitidmain that are correct and relevant. In
the quality management literature the distinctiemaiso often made between product and
process quality (Checkland 1991): product qualitguises on the quality of the end product.
Product quality criteria are used to conduct insipas of the finished product and to detect
and correct defects. Process quality focuses onquhéty of the production process. Process
quality focuses on defect prevention rather thated®n, and aims to reduce reliance on
mass inspections as a way of achieving quality (Dbgm 1986).

2.2 UML class model normalization

We propose a new best practice for UML class dragraalled normalization. The goal of
normalization is to reduce the ambiguity in cono@ptnodels. Currently, there exists a lot of
confusion in the literature about best practicesUML modelling and normalization of
conceptual models. According to Frisendal et &1(®), the biggest problem with UML is its
complexity. In business concept modelling, intuitie obstructed by unnecessary complexity
such as meta-constructs like aggregation, compasitimany-to-many associations,
inheritance, etc. which are not really necessarybiasiness users to understand. Ambler
(2009) defines class normalization as a procespplying simple rules to reduce coupling
and increase cohesion within the object designselated approach for improving object
diagrams is refactoring (Fowler 1999) which howeigetypically performed on source code
instead of models. Falleri et al. (2008) definemalization as removing all redundancies
from class models and finding abstractions. They ESA and Relational Concept Analysis
(RCA) to find possible class, association, att#bat method generalizations in models with



the aim of improving their abstraction level (Fellet al. 2008b).

We start our discussion with 4 examples of probléypgcally associated with traditional
UML class diagrams and how developers can bermiih fnormalization. Fig. 1 contains a
reflexive association example. The model aims pvagent a flow of activities. However, the
UML diagram does not reveal which the start or egdactivity is. Although, the UML
standard allows to give a name to the start ancdb&éad association, this is often forgotten by
software developers resulting in an ambiguous dmagrTherefore, this flow should be
modeled as a separate class. A flow is always ctaized by two associations, one with the
start activity and one with the end activity. Thesdationships are mandatory for the
association-ends with cardinality 1. The normalirgatiel is displayed in Fig. 2.

[9;. - Fliow

Activity 0.4

Fig. 1. class diagram with a reflexive association.

Activity

tark
End

Fig. 2. normalized class diagram without reflexiveassociation.

The second example in Fig. 3 shows an often eneceshtmany-to-many association. Li et al.
(2001) advise to model associative classes asaaepclass and decompose the association
into two associations between the two classes lanaéwly added class. This decomposition
changes the many-to-many association into one-toyraasociations that are much easier to
realize than many-to-many associations. In objeotlels, associations are instantiated as
power sets. However, still an improvement is pdssib their new model. The authors
introduced an association between the 2 origiredses which is superfluous since the new
object was introduced which has a mandatory assmciwith both entities. This association
can be removed.

Also interesting to consider is the literature artify-Relationship modeling (Lanzerini et
al. 1990) since UML diagrams can be derived from &fRemata. The standard binary
association in UML and ER have the attribute unigneeach end. Objects at unique ends are
counted only once if they are connected to a pdaticobject several times. At non-unique



ends every connection is counted even if severdhein lead to the same object. If this
property is set to unique, the instantiations &f #ssociation form a set, if they are non-
unique, a bag. The authors of (University of Capaif 2007) suggest to represent many-to-
many relationships as two one-to-many relationship®lving a new entity since it is
difficult to implement a many-to-many relationshipa database system. This new structure
can be implemented within a relational databas¢esysFeinerer et al. (2007) study this
unigue and non-unique property. Standard ER do¢sallmnv non-unique, but UML 2.0
superstructure specification (Object Managementu@ra005) does not make statements
about instantiations of associations being a sdiagy but the tools are standard on unique.
Standard in all UML tools, this multiplicity proggrfor many-to-many associations is set to
unique (1) which is another argument for the noimasibn of many-to-many relationships. If
isUnique is set to false, links carry an additioidgntifier apart from their end values. Many-
to-many associations as a consequence make thamiggnd query definition unnecessarily
complex and analysts cannot model more than liorlaetween the same objects if unique is
set on true.

Each instantiation Rent_i of this association isigle (Person_i, Car_i). A problem with
this representation is that the same person caenbtthe same car more than once since a
tuple can only occur once in a set. This problem ba resolved by instantiating this
association with an extra class. Again we seethi@two association-ends are mandatory for
Person and Car. The normalized model is displayddg. 4.

Person Gen Car

Fig. 3. class diagram with many-to-many association

Person Car

0..*

Rental

Fig. 4. normalized class diagram without many-to-may association.

Figure 5 contains an example of an optional-toarati association. In particular when it is
important to keep a history record for the assamaand to perform querying afterwards,
optional-to-optional associations should be instémtl by an extra class. For example, a
Person can be enrolled in 0 or 1 Session. A Sessionhave 0 or more participants. The
information related to an enrolment in a sessionnoa be kept by the class Person nor
Session unless null values are allowed. The presesic null values may result in

unpredictable behavior when queries are perfornmethe model. This association should be
instantiated by an extra class and the informasbauld be kept by this separate class



Registration. This class Registration will contah information about instances of this
association which an be considered as a best ggagtgain, this relationship is mandatory on
the association-ends of Person and Session. Thealized model is displayed in Fig. 6.

Person Session

Fig. 5. class diagram with optional-to-optional assciation

Person Session

0..*

Registration

Fig. 6. normalized class diagram without optional<-optional association.

Figure 7 contains an example of an associationdeiv@ partners, indicated by a diamond
in UML notation. UML defines an n-ary associatios laking n classes, n > 2 and at each
end is a multiplicity and uniqueness constraint.céxding to Genova et al. (2001),
understanding n-ary associations is often veryiadiff for modellers and analysts. The
multiplicity values typically specified for n-ary ssociations provide only partial
understanding and are incompletely defined by UNWe authors reveal an ambiguity in the
definition of UML minimum multiplicity for n-ary asociations and three alternative
interpretations are presented, each with its owsblpms and unexpected consequences.
According to the author, many modellers use theargr symbol in Fig. 7 as an abbreviated
version of a ternary association with a hidden hjinassociation. The limping links
interpretation has ternary links that only link timstances and leave a blank for the third one.
This option is however semantically weak and catitta the UML definition of n-ary
association. The other two interpretations are acpairs which implies that minimum
multiplicity must always be 1, which is not coneist with documentation and practice, the
potential pairs interpretation seems correct bwg &astrange effect when value is 1. the
authors propose a different notation similar to oormalization proposal. Based on the
Merise method (Rochfeld 1986), the ternary assiotias replaced by a new entity and three
binary associations that simulate the ternary aaSow. This entity is called the intersection
entity or associative entity (Song 1995). Eachanséation of this association is a triple
(Designer_i, Tool_i, Project_i). Again this tripg@n only occur once in a set. By instantiating
this association with a class, a second usageiaelaetween a designer and a tool for a
project becomes possible. Again, the associatiais-evith the weak entity type Usage are



mandatory for the classes Designer, Tool and Rrojéee normalized model is displayed in
Fig. 8.

Tool

Project Designer

Fig. 7. class diagram with association between motkan 2 partners and UML diamond
notation.

Designer Tool Project

Usage

Fig. 8. normalized class diagram without diamond ntation.

The special cases of aggregation and compositinrbeainterpreted as follows. In Fig. 9
we see that the filled diamond denoting compositiorlJML is a short notation for the
diagram in Fig. 10. In Fig. 11, we see the samdHerwhite diamond denoting aggregation.
This diagram in Fig. 12 can be further normalizedhe model underneath it.

School

Department




Fig. 9. class diagram with composition relationship

School

Department

Fig. 10. normalized class diagram.

School

Student

Fig. 11. class diagram with aggregation relationspi

School

D..*

Student




Fig. 12. normalized class diagram.

To summarize, each class diagram can be normaliz@edrmalized class diagram has the
following properties. First, it only contains bigaassociations and no more associations
between multiple parties. In other words, the diathmotation from UML is not needed
anymore. Second, there are no more reflexive astsmas, i.e. from a class to itself. Third,
each binary association has at least 1 mandatdey ise. with cardinality 1. On the other side,
there can be cardinalities 1, 0..1, 0..*, etc. timeo words, in a normalized class diagram there
are no more many-to-many and optional-to-optiorsdoaiations since 1 side is always
mandatory.

Customer Rert Car

Earn

Bonus

Fig. 13. class diagram without normalization.

Bonus Customer Car

Earn Rent

Fig. 14. normalized class diagram.

Fig. 13 and Fig. 14 contains an example of a napat@n procedure. Normalization has
some advantages. First, normalization is a protess converges to a unique solution.
Second, normalized class diagrams automatically teanormalized database schema during
implementation. Normalization does not need to kapgt database level since it already was
performed at class level.

The result of repeating this normalization procedisra normalized class schema that is
partially ordered to form a lattice structure. st lattice structure, each association-end on
the upper side has cardinality “1”.

2.3UML associations and the use case-entity interactiomatrix

A question that remains unanswered by UML is whershwould model an association. Nor in
UML, nor in ER-modeling there exist objective criteto determine when an association



should be introduced. A possible answer was initeduin (Snoeck et al. 1996). An
association should be introduced when 2 objectstyaere something in common for a certain
span in time. In other words, that they have a pgittteir life cycle in common.

We only consider business use cases, while 10 siesyuse cases are not included in our
discussion. We also require that the use casesitaric, i.e. that they cannot be further
decomposed. An atomic use case will change thersyftom one state into another and is
defined in terms of how this use case will createdelete an object or form or break an
association between two instances. Such an atosec case is equivalent to a system
operation in (Larman 1998). The notion of jointiawt (D' Souza 1998) can be used to
represent an atomic use case.

For example, a use case like “manage customer”|dhbe decomposed into “create
customer”, “change customer” and “end customer”. & do not consider extend and
include operations on use cases. In the situatibarevtwo objects share a part of their
lifecycle, there is an objective reason to intragluan association between them. After
composing the use case-entity interaction matrix,use FCA to come up with a clustering.
Entities that participate in the same use casegraiged in FCA concepts based on the use
cases in which they participate. In section 4 wenzon on FCA'’s relevance in conceptual
modeling.

3. FCA and C-K theory essentials

The Concept-Knowledge theory (C-K theory) was aliyi proposed and further developed by
Hatchuel et al. (1996), Hatchuel et al. (1999) &fadchuel et al. (2002). C-K theory is a
unified design theory that defines design reasomigigamics as a joint expansion of the
Concept (C) and Knowledge (K) spaces through &serfi continuous transformations within
and between the two spaces (Hatchuel et al. 2@3¥).theory makes a formal distinction
between Concepts and Knowledge: the knowledge spatssts of propositions with logical
status (i.e. either true or false) for a designehereas the concept space consists of
propositions without logical status in the knowledgpace. According to Hatchuel et al.
(2004), concepts have the potential to be transédrimto propositions of K but are not
themselves elements of K. The transformations witand between the concept and
knowledge spaces are realized by the applicatiofowf operators: concept knowledge,
knowledge concept, concept concept and knowledge knowledge. These
transformations form what Hatchuel calls the desiguare, which represents the fundamental
structure of the design process. The last two d¢peraremain within the concept and
knowledge spaces. The first two operators crossbinendary between the Concept and
Knowledge domains and reflect a change in the #&gstatus of the propositions under
consideration by the designer (from no logicalusdb true or false, and vice versa).



Conceptualisation

C - K

Concept

expansion Knowledge

expansion

C Concept activation K

Fig. 15. Design square (adapted from Hatchuel et.£2003)

Design reasoning is modeled as the co-evoluticd ahd K. Proceeding from K to C, new
concepts are formed with existing knowledge. A emiccan be expanded by adding,
removing or varying some attributes (a “partiticof’the concept). Conversely, moving from
C to K, designers create new knowledge either lidate a concept or to test a hypothesis, for
instance through experimentation or by combiningeetise. The iterative interaction between
the two spaces is illustrated in Fig. 15. The beaitC-K theory is that it offers a better
understanding of an expansive process. The conixinef existing knowledge creates new
concepts (i.e. conceptualisation), but the activatind validation of these concepts may also
generate new knowledge from which once again newejats can arise.

3.1 FCA essentials

Formal Concept Analysis (Ganter et al. 1999, Wille82) is a recent mathematical
framework that underlies many methods of knowledggovery and data analysis. The
starting point of FCA is triple of sets (M, F, Talled a formal context wheré! M F is g
binary relation. This triple can be considered aatabase table consisting of set of rows M
(called objects), columns F (called attributes) erubses representing relation T. An example
of a cross table is displayed in Table 1 where abjare domain entities, attributes are use
cases, and incidence relation shows which entigscipate in which use cases.

Table 1. Example of a formal context

3 Rl €| 8 B E| S| 7| "
Member X X X X X X
Book X[ X| X| X| X | X | X
Loan X X X X

Given a formal context, we then derive conceptsa@der them according to a subconcept-
superconcept relation. This order makes a lattibelhvcan be visualized by a line diagram.



The notion of concept is central to FCA. The wayAHGoks at concepts is in line with the
international standard 1SO 704, that formulates tbkowing definition: A concept is
considered to be a unit of thought constitutedaaf parts: its extent and its intent. The extent
consists of all objects belonging to the concepiijlevthe intent comprises all attributes
shared by those objects. Typically, one would theke about informational attributes but-in
line with an object oriented approach- one canassivell consider behavioral attributes such
as reaction to events or participation in proces&ss let us illustrate the notion of concept of
a formal context using the data in Table 1. Foetao$ objectsoi M, the use cases that are

common to all objects in the seD can be identified, writtews (0), via:
A=s©O)={fl FI"To O (ol T

Take for example the s€ i M consisting of objects Member, Book and Loan. ThisGs
of objects is closely connected to a #etonsisting of the attributes “borrow”, “renew”,
“return” and “lose”, being the use cases sharethbybjects irD. That is:

({Member, Book, Loan}) = {borrow, renew, return,se}

Reversely, for a set of attributéds we can define the set of all objects that shdre a
attributes inA:

o=¢t(AN={iTM[I'T AT T

If we take as example the set of events of Loamaha{borrow, renew, return, lose}, we
get to the seD I M consisting of the objects Member, Book and LodratTs to say:

({borrow, renew, return, lose}) = {Member, Book, &o}

As one can see, there is a natural relationshipd®stO as the set of all objects sharing all
attributes ofA, andA as the set of all attributes that are valid desioms for all the objects
contained inO. Each such pairQ, A) is called a formal concept (or concept) of theegi
context. The sen=s(0) is called the intent, whil® =¢(A) is called the extent of the concept
(O, A).

Notice that concepts are always maximal in the eséimst the seD containsall objects that
share the attributes éfand thatA containsall shared attributes of the objectsn

Moreover, there is a natural hierarchical orderelgtion between the concepts of a given

context that is called the subconcept—supercon@ﬂorﬂ.
(OL,A) £ (O2,A)  (Od O, UAN AY)

A conceptd = (0, A) is called a subconcept of a concept (0., A) (or equivalentlye is

called a superconcept of a concelptif the extent ofd is a subset of the extent ef(or
equivalently, if the intent ofl is a superset of the intent &f For example, the concept with
intent “enter,” “leave,” “lose,” “return,” “renew,and “borrow” is a subconcept of the concept
with intent “lose,” “return,” “renew,” and “borroW.With reference to Table 1, the extent of
the latter is composed of object types Loan, Menainelr Book, while the extent of the former
is composed of object type Member.

! The terms subconcept and superconcept are usedrhan FCA-context and should not be confused tighnotions of
subclass and superclass as used in the OO-paradigm.



The set of all concepts of a formal context comiiméth the subconcept-superconcept
relation defined for these concepts gives riseh® mathematical structure of a complete
lattice, called the concept lattivéM,F,T)of the context. The latter is made accessible to

human reasoning by using the representation cdleelgd) line diagram. The line diagram in
Figure 16, for example, is a compact representatibthe concept lattice of the formal
context abstracted from Table 1. The circles oresad this line diagram represent the formal
concepts. The shaded boxes (upward) linked to & nepresent the attributes used to name
the concept. The non-shaded boxes (downward) linkéHe node represent the objects used
to name the concept. The information containedhi formal context of Table 1 can be
distilled from the line diagram in Figure 16 by &ppg the following reading rule: An object

g is described by an attribubeif and only if there is an ascending path from tlbele named
by g to the node named b For example, Member is described by the attribtéster”,
“leave”, “lose”, “return”, “renew” and “borrow”.

Retrieving the extent of a formal concept fromree Idiagram such as the one in Figure 16
implies collecting all objects on all paths leadohgvn from the corresponding node. In this
example, the extent associated with the upper imflean, Book, Member}. To retrieve the
intent of a formal concept one traces all pathslitaup from the corresponding node in
order to collect all attributes. In this examplee second concept in row two is defined by the
attributes “sell,” “classify,” “acquire,” “lose,” fenew,” “return,” and “borrow.” The top and
bottom concepts in the lattice are special. Thedmpcept contains all objects in its extent.
The bottom concept contains all attributes in ni'emsion. A concept is a subconcept of all
concepts that can be reached by travelling upwahis concept will inherit all attributes
associated with these superconcepts. In our exari@dirst node on the second row with
extent {Member} is a subconcept of the top nodéweixtension {Loan, Member, Book}.

superconce|
+ . e

subconcept

Fig. 16. Line diagram corresponding to the contexirom Table 1

In FCA, the concept generated by an object type defined asg(P) = (¢(s (P)),s (P))and
the concept generated by an event ty@e / (b) = ¢ (b)s # (b)) . In the line diagram, the nodes

are labelled by the object types which generatethesponding conceft These are called
the own object types of the conc&pt An object clas®\ is called an owner class for a use
case if this object clags is involved in this use case and there is no cMssh is existence
dependent oA and which is also involved in this use case.

4. lterative requirements engineering process using F&

According to Wieringa et al. (2006), many of thepees published in the requirements
engineering field describe techniques for use iguir@ments engineering practice: for



example, how to improve the process of negotiataggiirements or how to build use case
models, etc. Unfortunately, there are few reseaapbers that investigate the properties of
these techniques, or the problems to be solvetidsettechniques (Wieringa 2005a, Wieringa
2006b). According to the authors, the absence df sesearch prevents the transfer of results
of requirements engineering research to practiomgzanies will hesitate to adopt techniques
of which the properties are not well known, notrthgghly investigated or for which it has
not been investigated which problems they solve amdler which conditions. The
methodological framework we use is C-K theory, Wihgives a clear structure to the process
of iterating back and forth between the human aatar the documents describing the system
under development.

A problem is a difference between what is perceiaad what is desired, that we want to
reduce (Wieringa 2003). An action problem is a etd change the world; a knowledge
problem is a desire to increase our knowledge abtmeitworld. Action problems can be
classified into two kinds. A design problem is aside to specify a change and an
implementation problem is a desire to implementpac#ied change. To solve a design
problem, we must do two things: Analyze the problmd specify a solution. According to
(Wieringa 2003), requirements engineering is theb[@m analysis part of a design problem.
It is about a knowledge problem, which the engiriges to solve by building a theory about
the domain of this problem. This knowledge creaponcess can be seen as a special case of
the unified theory on design, called C-K theorye Tiotion of design as an expansive process
addressed in design theories such as C-K theonyldhmt be confused with the software
design phase; although a software design procesdeaseen as a special case of design
reasoning in C-K theory. In this section, we dischsw the requirements engineering process
can be framed using C-K theory.

4.1 C-K theory in requirements engineering

Modeling software systems contains both formal and-formal steps. These non-formal
steps should not be unpredictable or irrationat,should follow a systematic way of thinking
(Marincic et al. 2008). In some papers on formathods, the modeling process is presented
as if modelers had all the knowledge about theesydtefore they started modeling. In that
case it is possible to build a model in a strietiy-down manner. But modelers usually do not
know everything up front about the system that theg modeling. One of the essential
aspects of the requirements modeling processréiitely increasing the knowledge available
about the system. The source of information carebbnical documents or domain experts.
Most likely, the modeler does not have a complei#®edge about the system. The need for
a structured approach has been described in the papers on the soundness issues in
requirements engineering. In this section, we @ivdear structure to this modeling process
by using C-K theory. We particularly focus on tkerative refinement steps, which describe
how the model grows from an initial, sketchy, gah&lescription to its final version. In our
approach, the expert is the driving force behiredrtiodeling of software systems.
Requirements engineering is basically a procesgeddting back and forth between a
concept and a knowledge space. The knowledge spmatains the information available to
the domain expert including initial sketchy requients for the system under development.
This knowledge is then conceptually organized aisdialized using the FCA lattices. We
perform this conceptualization to put the actioratlowledge available in the K space under
scrutiny. In the C space, these lattices are useddrification of the model and to detect
inconsistencies, anomalies, missing entities, missise cases, etc. These newly discovered
concepts, anomalies and concept gaps are therat@ctiand used to improve the current
model. In the K space, these findings are feedell tathe domain expert and the lattices are



used for validation of the requirements model. Thegerve as a
communication instrument between the software nevdeland the business
user, for whom the technical jargon of the softwangineer is often difficult to understand.
Unspoken assumptions and desires on semantice ahtidel should be made explicit and
communicated to all stakeholders (Wieringa 2001).

C K

*FCA Lattices:
- entities vs. use cases
- use cases vs. operations
- entities vs. operations

+Use cases
+ Expert domain knowledge
+ Conceptual model

ANALYSIS
or

FCA Artifacts

* Anomalies
« Concept Gaps

« Missing Use Cases
+ Missing Entities

Validatiorn

« Manual Inspection of
inconsistencies

« Validation of Concept

Gaps & Anomalies

= Improved Model

Fig. 17. Iterative C-K requirements engineering preess

This process is graphically described in Figureifring the K C step, the FCA lattices
are constructed that form the core artifacts of oegquirements model construction,
verification and validation method. These lattica® built from the entity - use case
interaction matrix, but can also be based on acase - operations or entity - operations
interaction matrix. The entity - use case intemttattice partially orders the entities in the
conceptual model based on the use cases in whishptarticipate. This lattice may reveal
missing concepts, entities and use cases, butisgees such as use case participations that
should be added or removed. Also anomalies in #featioral side of the model can more
easily be detected because of the non-hierarcipaeial order relation. The use case -
operations interaction lattice gives insight inte toperations needed to complete the use
cases. Missing operations, use cases that shoslboitd not have certain operations in their
execution scenarios, use cases that should hat&inceperations in common, etc. can be
identified. The entity - operations lattice giveddaional insight into the behavior of entities
in the conceptual model. In the special case omataise cases, i.e. the use cases are not
further decomposable, every use case corresponds tiperation in the conceptual model
and vice versa. In this case only one lattice, hathe entity-use case lattice is needed. These
lattices are used during the C -> C step for formaification of the model, as a human-
centered instrument that facilitates the detectdninconsistencies, anomalies, etc. The
original model, the discovered anomalies and tlep@sed modifications are returned to and
discussed with the domain expert during the C K step. The lattices serve as a
communication instrument, between the developertaaadlomain expert. During the K K
step, these lattices are used for semantic vadiddity the domain expert. This may result in
the addition, modification or deletion of use caseadifications in the conceptual model, etc.
These artifacts may be used as input for a newatiter through the C-K loop.



4.2 FCA lattice properties and relation with software atifacts

A conceptual model is a dual structure of concepis their instances called objects and
behavioral elements of the model (use cases) ichwthey participate. These concepts or
classes are related through associations. In #utios we intend to formalize this dual
conceptual model structure with FCA. FCA has a wsthblished mathematical foundation
whereas conceptual modeling is to some extentestidmbiguous discipline.

After composing the use case-entity interactionrmatve use FCA to come up with a
clustering. Entities that participate in the sarse oases are grouped in FCA concepts. These
shared use case participations indicate a shafedydie of the objects and the lines
interconnecting the concepts in an FCA lattice barused as associations in a UML class
diagram between the objects belonging to the ioterected concepts. From this FCA lattice,
a UML class diagram can be automatically derivedtesian FCA lattice based on a correct
entity-use case interaction matrix is isomorphicthe correct UML model. Each line
interconnecting 2 concepts can be seen as a dissotiation between the own objects in the
extent of the corresponding concepts. A line betw2econcepts in the lattice means that
between 2 instantiations exactly 2 own classeféneixtent of the 2 concepts, one tuple can
be created. This follows from the object-use cassaction matrix.

One of the main contentions of this section is tR&A leads to a normalized class
diagram. One of the consequences is that FCA causbd to detect missing classes. An
important benefit of FCA over other techniquestss non-hierarchical partial ordering of
concepts. This is more expressive than traditibieriarchical tree-like structures, which was
already stated in (Christopher 1965). Hierarchideatomposition gives a distorted and
simplified view that does not necessarily confoomdality.

Table 2 summarizes the properties of an FCA latim&ed on a use case-entity interaction
matrix and how it can be used to distill the cotrraodel from this interaction matrix and the
original UML model. In case there is a discrepabeyween one of these columns for the
model, solutions can be proposed based on thes$eptaedice guidelines. The first column
contains an interesting observation made by lookinthe FCA lattice. Since this lattice is
based on the entity-use case matrix, the correspgratatement in the third column is true.
The statements made in column 2 are best pradocese UML model that were introduced
to make the use case —entity interaction matrix @NtL model consistent with each other.
Multiple possibilities for model revision paths cha associated with one lattice observation.
For example, take the second row of Table 2 if@hierno direct line between the concepts
with A andB as own objects in their extent in the FCA lattitesn there should be no direct
association betweeh andB in the UML model. This is required because the UiMadel is
isomorphic with the FCA lattice unless of course tiise case-entity interaction matrix
contains an error. In the use case-entity intevaatatrix bothA andB should have use cases
in which eitherA or B does not participate. If the domain expert howesays that there
should be a direct association betwdeandB which is mandatory foA in the UML model,
then the FCA lattice flags an error in the use -@g#y interaction matrix and use case
participations should be propagated frénto B. This will have the consequence that there
will appear a direct line in the FCA lattice betwe®eandB. FCA can be used to flag errors in
both the UML model and use case-entity interactnarix.

Table 2. Normalization guidelines

Entity-use case FCA lattice Normalized UML Use case-entity matrix
model

1 Entity A belongs to a concept There should be a directtyEAtshould participate



lower in the lattice thanB's association betweehand in all use cases in which
concept and there is a direct life which is mandatoryentiiy B  participates
between both concepts. (cardinality “1”) for B. B including creation and
is existence dependent afeletion
A
2 There is no direct line betweenhere should be no dired andB have use cases in
concepts withA and B as ownassociation betweehand which eitherA or B doesn't
objects in extent. B participate.

3 There is a concept with 2 or moiRReplace direct (many-toA and B share 2 or more
own use cases shared AyandB many) association bwse cases and there is no
and no owner entity. contract entity with whichentity which functions as a

association is mandatorgontract betweel\ and B

for A andB. and which participates
only in these 2 or mor
use cases

4 There is no upward path fro®@n implemntation levelEntity A  does  not
entity A’s concept td’s concept. this meansA can not callparticipate in all the use
the proprietary operationsases in  which B
of B. participates.

5 There is a nodd&R with two use There is no associatioifthere is no entity S that
casesa andb as label and no owtetweenA and B nor a participates in use cases
entities. EntitiesA andB lower in contract entity whichand b. A and B do not
the lattice participate in these usaerconnects them. participate in the creation
cases and there is no upward path and deletion cases of S.
betweenrA andB nor are there an
entities on the path fror to R or
BtoR

Table 2 contains the different types of normal@atsteps that can be undertaken. A sequence
of normalization steps is called a normalizatiorthpand each path converges to a unique
solution. In each case study we will show the rahee of normalization. In section 4.5, we
see an application of the rule in row 3 of Tabldr2section 4.6 we see a combination of
applying rules in row 1 and 2. In section 4.4 we ae application of the rule in row 5.

The FCA lattice components that facilitate the dit& of anomalies during semantic
validation of the model are explained in Table @bl€ 3 summarizes the results of (Poelmans
et al. 2010).

Table 3. Model anomalies and FCA analysis compontn

Model anomalies FCA analysis component

Missing or faulty use cas®uality of partial ordering based on entities anske wases
participations reveals faulty and incomplete participations

Missing proprietary uséNe gain insight into the owned or proprietary uases of an
cases such as creation aedtity by looking at the concept that owns thisitgntThe



deletion of an entity owned use cases by thisyeati attached as labels.

Missing entity A concept with two or more owned us@ses and no own
entity.
Superfluous entity A concept with more than one ovemtity indicates in the

current model 2 entities have the same behavioreithdr one
of them should be removed or one of them shoultggaaite in
additional use cases.

The relevance of rule 1 is showcased in sectionat 4.4. The relevance of rule 2 is
showcased in section 4.3. The relevance of rule &plained and demonstrated in section
4.5.

We first showcase our method on some toy examplasiake the reader familiar with
FCA-based conceptual modeling. Then we provide alife case study. We show the
detection of some of the typical errors made by eterg using the rules of section 4.2.

4.3 Case study: Book Trader System

We now illustrate this process using the Book Traystem introduced in (Liang 2003). The
collaboration diagrams and conceptual model digalay Figures 18a — f contained some
errors that remained undetected to the authorselTé@eors are:

Entity Line does not participate in any use casesom@ing to the Collaboration

diagrams.

Separate create and delete use cases are missirgntites Book, Order, Line,

Customer and Invoice.

In the collaboration diagrams, Order is involvedtie provide- quantity operation

which is in contradiction with the class diagram which Line is having this

operation.

A better modelling option would be to allow new gpective customers to register.

Currently, according to this model a Customer aally be registered as part of the use

case Place Order.

The class Invoice cannot be seen as an objecthnsmess model since it has no

further behaviour after its creation, however ibsld be included in the information

architecture.
We found these errors while studying the threeckedétand this analysis process will now be
discussed in detail. During the K C step, we constructed a cross table indicatinghvh
entities participate in which use cases. This tab#played in Table 4 is based on the
collaboration diagrams and the conceptual modéhenoriginal paper and we will call it the
entity - use case interaction matrix. Each collabon diagram represents one use case. When
an entity appears in de collaboration diagram, ighiggistered in the table with a C, M or E.
The C indicates that the use case creates thg,avitiindicates reads or modifies the entity
and E indicates it terminates the entity.

Table 4. Faulty entity-use case matrix
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The corresponding lattice is displayed in Fig. D8ring the C C step we performed a
syntactic verification of the model quality basedtbe lattice visualization. Using the lattice
in Fig. 19, we found that the entity Line does patticipate in any use cases according to the
original collaboration diagrams. Second, when anaty the attributes of the FCA concepts
we found that separate create and delete use wasesmissing for most entities defined.
UML best practice guidelines advised the definitafriboth creation and deletion use cases
(Rumbaugh et al. 2004). These are some clear nmgdahiomalies. In the C K step we
propose modifications to resolve these anomaliesheé K K step the improved model is
communicated to and validated with the domain exper

Order

provide title and price

create new order
Customer

-
% new order
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provide customern_no
Place order record new custome
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Fig. 18a. Collaboration diagram (adapted from Liang2003)
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Fig. 18b. Collaboration diagram (adapted from Liang2003)
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Fig. 18c. Collaboration diagram (adapted from Liang2003)
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Fig. 18d. Collaboration diagram (adapted from Liang2003)
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Fig. 18e. Collaboration diagram (adapted from Liang2003)
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Fig. 18f. Class diagram (adapted from Liang 2003)



| Generate-in\roice| | Place-order

Check-credit
Deliver-book

Check-stock

Fig. 19. Entity — use case interaction matrix

During the K C step of our second iteration through the desggrare we constructed a
matrix, displayed in Table 5 that maps the (nonvatd use cases against the operations that
instantiate them.

Table 5. Faulty use case-operations matrix
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The corresponding lattice is displayed in Figure20ring the C C step the operations -
use case lattice helped us to identify some ok#reantic discrepancies between the original
conceptual model and the real world, for example, see that the record-new-customer
operation only occurs in the use case Place_Oidew prospective customers cannot be
created without an order. This is an unrealistiost@int that is also incorporated in the
original domain model. One could consider to makehemandatory association into an
optional association would not better reflect tgalDuring C K and K K, modifications
are proposed and their semantics are discussed.
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Fig. 20. Use case — operations interaction lattice

The third matrix, displayed in Table 6, maps thétieis against the operations in which
they are involved.

Table 6. Faulty entity-operations matrix
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The corresponding lattice is displayed in Figure @then we look at the concept with
entity Invoice in its extent, we see that Invoic#ygarticipates in a create event. The Invoice
entity has no further behavior and should not bedeterl as a separate class. Business
modeling analysts will typically not consider tiiisbe an object however it should of course
be integrated within the data and information dediure. The creation of an invoice should
be modeled as an operation or an event from whidbcament is generated. Again, creation
and delition operations are missing for most esgitiMoreover, Line is involved in the
provide-quantity operation which is in contradictivith the use case - entity interaction
matrix.

provide-customer-no
reduce-credit-balance
provide-credit-halance
provide-name-and-address
assign-customer-no
record-new-customer

provide-total-cost reduce-stock-level
provide-all-features | | provide-stock-level
create-new-order provide-title-and-price

|create-newinvoice| provide-guantity }\

Fig. 21. Entity — operations interaction matrix



4.4 Case study: Hotel Administration System

In this section, we showcase how the FCA latticesewused for the semantic validation of a
hotel administration system model. Customers cakenmaservations for a particular room
type. Reservations must be confirmed by a letfesuth letter is not received in time, the
reservation is cancelled. When a guest checks ithéofirst time, his details are registered. At
the end of the stay, an invoice is sent to theacust who made the reservation. Suppose a
business analyst would come up with Table 7. FiysBows an excerpt of the initial UML
model that was developed for this hotel adminigirasystem.

Table 7. Incorrect entity-use case matrix for theHotel Administration
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At first this UML model seems to be alright. Durititge K C step the lattice in Fig. 22
was obtained from the use case — entity interactiatrix. In this example, the use cases were
not further decomposable and every use case comdsgo an operation in the conceptual
model. Such a use case can also be called an énehts case, only one matrix namely the
one that maps entities versus use cases is neBaedhterplay between use cases and entities

and the additional partial ordering relation helfpedvever to reveal some semantic issues in
the original UML model during the C C step.
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Fig. 22. Incorrect hotel administration model and atity-use case interaction lattice
based on original incorrect matrix

We used the lattice for semantic validation of tinedel. First, the person or company who
made the reservation for the guest, may be someleaghan the person who is staying in the
hotel. Second, we see that there is no upward fpath the concept with entity Customer to
the concept with use cases bill and consume. lerotlords, the entity Customer does not
participate in the use cases bill and consume wdh@uests of the hotel should be able to
make consumptions. Second, Customer does notipatécin the use case e-stay, whereas
the guest of the hotel should be able to checlobttie hotel at the end of his stay. Based on
these observations we decided to add an entitytGai¢se conceptual model during the C
K step. The observation that Customer is not aasettiwith Room is perfectly allright. The
Customer makes a Reservation for a Room type, @fgp®oom is only relevant for the
guest of the hotel. Fig. 23 contains the corrddi_lunodel that was obtained after discussion
with and validation by the domain experts during kb K step and contains the entity-use
case interaction lattice corresponding to thisextrmodel.



A

e_invoice
remind
pay

check_in invoice
1

no_show
cancel

confirm
resemne

Reservation

e_customer
cr_customer

e_room_type
cr_room_type

e_guest
cr_guest

Payment

Consumption

Fig. 23. Correct hotel administration lattice andUML model which is isomorphic to this
lattice

4.5 Case Study: Ordering system

This section discusses the development of the imgleystem for computer hardware, office

material, etc. of the university KULeuven in BelgiuThis ordering process is a standardized
process for KULeuven, where an order is placed wheaquest for ordering a computer is
received from an employee. A request is sent td fDetonstruct a computer. In a standard
setting, payment is only made after the goods wefiwered to the KUL. Fig 24 contains the

initial UML class model for an excerpt of this syst, which is not normalized and does not
allow for the detection of potential conflicts isaicase execution order. After building the
use case-entity interaction matrix in Table 8 aattide we obtain the lattice in Fig. 25.

KULeuven Dell

Fig. 24. Ordering system model with missing entity

During the C C step we use FCA for formal verification of theoadels, detection of
missing entities, detection of use cases for whhesponsible entity has been assigned, etc.
We see that Dell computer and KULeuven jointly jggraite in 3 main use cases. If this joint
participation is not coordinated, both KULeuven dbell computer can impose sequence
constraints on the order of execution for theses@ eases. This may result in a situation of
deadlock. Indeed, for the KULeuven these use daees a fixed order of execution, namely:



1. Order
2. Deliver
3. Pay

However, for computer manufacturer Dell who alsatipipates in these use cases, the
ordering of the use cases is:

1. Order
2. Pay
3. Deliver

We see there is one node in the lattice with nayelatbel and 3 use case labels attached.
We see that the entities KULeuven and Dell parétEpin these use cases, but an entity
responsible for coordinating this joint participatiin these use cases is missing. The business
processes of KULeuven and Dell have to communiediie each other and the sequence of
use case execution should be coordinated. DuriagCth K step an extra entity named
Contract is added as a contract between these ttarsato guide and coordinate the
collaboration. Figure 25 contains the UML modekafexcerpt of this system. During the K

K step this modification is explained to the besi® user, together with the constraints
imposed by this “contract” object type on use easscution order.

Table 8. Faulty entity-use case matrix
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Fig. 25. FCA lattice with missing entity and corret ordering system model with contract
entity added after normalization

4.6 Case study: Elevator repair system

In this case study an engineer works for exactly office. This engineer is responsible for
repairing broken elevators. When an elevator faits,interrupt is sent to an office and an
engineering is sent to the elevator. Fig. 26 costae initial UML model and Table 9 the
entity-use case interaction matrix.



Table 9. Initial entity-use case interaction matrk
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There are however some issues with this modelnihéel is not normalized and this has the
following consequences. During the C C step we analyzed the requirements artifacts. The
UML model shows a direct association between Offacel Elevator. Assuming that the
unique property has been set (which is reasonalslenique is “standard”), this means that
the same elevator cannot send an interrupt mora thae to the same office. The
associations between instantiated objects fornt argkin a set, a tuple can only occur once.
This is an undesirable property of the non-nornedizJML model containing the many-to-
many relationship. In a many-to-many relationshipemtity is foreseen to record more than
one association and its properties between the sataatiated objects.

Archive_Repair_Action
Cr_Repair_Action
i

Close_Interrupt
Report Interrupt
T

Archive_Engineer
Change_Engineer_Details
Register_Engineer

Archive_Office
Register_Office

Archive_Elevator
Register_Elevator

.

Fig. 26. Initial UML model and FCA lattice for initial model of elevator repair system

In the FCA lattice based on the use case-entigraction matrix in Fig. 26 we see no
direct line between the concepts of Elevator antic&f The lattice indicates there are 2
events not coordinated by an entity and in whicthlamtities participate. Based on the lattice
recommendations a new entity should be added duhegC K step with which both
Elevator and Engineer have a mandatory associafiois. entity replaces the original direct
association and coordinates the 2 use cases. \Mbisantity “Interrupt”.

In the FCA lattice there is no direct line betweka concept of Engineer and the concept
of Elevator. In other words, there is no assoamtiothe FCA lattice based on the use case -
entity interaction matrix that corresponds to theea many-to-many association between
Engineer and Elevator in the UML model. The consega of the direct many-to-many



association in the UML model is that the same Elavaannot get a second repair by the
same Engineer. This is also an undesired propehighnvcan be solved by normalization
during the C K step, i.e. in this case by replacing the assiociaby a separate class
associated to the entities Elevator and Engineer.

By studying the lattice during the C C step we see there is no upward path from Office
to Engineer. There is also no direct line from tomcept with entity Office to the concept
with entity Engineer. According to the FCA lattibased on the use case entity interaction
matrix there should be no direct association betw@#ice and Engineer or the use case-
entity matrix should be modified. In the UML modElpgineer has a mandatory relationship
with Office. When an Engineer is created, modif@darchived, the corresponding Office
should at least be notified (as part of the executif these use cases) of these changes since
Engineer is existence dependent of an office. Cdliernatives are also possible, however for
this case we chose this configuration, in pradiemanagement will have to decide. If the
Office object disappears the Engineer object shdlderminated too since the mandatory
association disappears. We see however that Offinet involved in all use cases in which
Engineer is involved. This problem was solved bgpagating the use case participations
from Engineer to Office during the C K step.

Interrupt use cases are not coordinated and Engmeet involved in these use cases Also
repair use cases are not coordinated by an effyA suggests to introduce Interrupt and
RepairAction as 2 entities in the UML model. Thdrere is still no relation between
RepairAction and Interrupt. This makes it impossibd know afterwards which Engineer
worked on which Interrupt. There is no direct agsiian between Interrupts and Repairs. As
a consequence, Key Performance Indicators canngéherated from this model and neither
data mining nor business intelligence can be applldhe correct associations are missing
fundamentally. The solution is to propagate all aase participations from RepairAction to
Interrupt. In the FCA lattice, RepairAction will bght above Interrupt. In the UML diagram
there is now a direct association which is mandafor RepairAction. The correct UML
model is displayed in Fig. 27, the correct entiggcase interaction matrix in Table 10 and
the corresponding FCA lattice in Fig. 28.
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Fig. 27. Normalized UML model

Table 10. Entity — use case interaction matrix fonormalized model
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Fig. 28. FCA lattice for normalized model

At first it seems the model contains a circular stoaint, namely starting from
RepairAction it is possible to navigate to Officg Interrupt, but it is also possible to navigate
from Engineer to Office. In the original model batistantiations were considered to be the
same, this invariant can be written in OCL as foqMeyer 1997):

RepairAction.Interrupt.Office.Deep-Equal(RepairdctEngineer.Office).

One of the consequences of this OTIS-based exammplee following. If we impose this
constraint, it is possible that some Offices reedivo many requests and other Offices too
little. This is an example in which the circularnstraint should not be imposed. In the
normalized model, engineers of no matter what ©ffian do a repair action, which solves the
former problem. The result is that the notion ofi€&f became a virtual entity in the system

and not a physical office anymore.



5. Validation experiment

We empirically showed the relevance of our researth a modelling experiment in which
20 students took part.

5.1 Participants

The goal of the experiment was to evaluate thetigeddeasibility of the C-K design loop
supported by FCA for software requirements engingeiThe experiment conducted with the
collaboration of students, consists of a modelkmgrcise in which they should distill entities
and elementary processes from a textual descripti@nbusiness process. Then, they should
compose a matrix in which is indicated which easitparticipate in which processes. Their
solution is then handed over to the data analyst udes FCA to detect anomalies, missing
object types, etc. and gives suggestions to theesta for improving their original model.
They then implement these changes. The first exyart is performed in collaboration with
students of the course 'Ontwikkeling van Bedriggtassingen' in March 2010. The
experiment took place as part of an exercise sesgithe class.

5.2 Setup of experiment 1

The experiment was built around the Web Shop case.

Web shop case:
In the simple Web shop registered customers cateshopping carts. They can choose from

various products, and select them to put themenstiopping cart. Once put in the shopping
cart, a product can be confirmed (definitely, ardde archived) or removed from the cart. Of
course, at the end of a shopping session, thenuast be paid, and is next delivered to the

customer.

Table 11. Formal context of web shop case
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Fig. 29. Web shop case

Table 11 contains the use case-entity interactiatrimand Fig. 29 the correct normalized
class model. The C indicates that the use caseesréize entity, M indicates that it modifies
the entity and E that it deletes the entity. Fig.c8ntains the FCA lattice based on this correct
matrix.

Arch_item
Remove_item
Add_jtem

Cartitem

Deliver_cart
Pay_cart
Cr_cart

End_customer End_product
Ch_customer Ch_product
Cr_customer Cr_product

| Customer| | Productl

Fig. 30. FCA lattice based on correct matrix
5.3 Results of experiment 1

Starting from the use case-entity interaction matrovided by the students, we derived an
FCA lattice. None of the students succeeded in nga&i fully correct model for the system.
The different solutions of students could howewverchtegorized in four broad categories of
structurally similar models containing some typicaddeling errors. These FCA lattices and
in particular the partial ordering of entities matleeasy to identify faulty or missing
associations and missing or faulty use cases amdcase participators. During the semantic
analysis of the students' solutions the latticedemteasy to identify the different modeling
options students chose and where they confusegteiiff options or mixed then together. This
reasoning over models and model choices helpedhie@ng a uniform software model. We



found it more straightforward to distill this infmation on syntactic and semantic correctness
from the FCA lattices than from the UML model antdity-use case interaction matrix. In
these traditional artefacts information is morettghiad and no partial ordering is available,
whereas FCA provides a condensed and complete ieweref the model's syntax and
semantics.

The following errors were regularly found using @A lattices:

For each entity the proprietary use cases are miad#e as the labels connected to
the concept corresponding to the entity. 16/20destts forgot one or more terminate
entity use cases, whereas, only 3 students forgmade entity use case. An excerpt of
the lattices is displayed in Fig. 31 where the studorgot the EndCUSTOMER and
DeliverCART use cases.

Fig. 31. Termination use case omission

By following the lines upward, we can easily seewhich use cases an entity
participates. By following the lines downward oransee which objects participate in
a use case. We found that for use case “Removelff& cart”, “AddITEM to cart”,
students tend to forget that also the initiatotho$ use case, i.e. the Customer, also
participates in these use cases together with t@had ShopCart. Only 1/20 students
modeled this correctly furthermore only 7/20 studetid not forget that the initiator
of “CrCART”, the Customer also participates in thise case. Fig. 32 contains an
example of lattice excerpts showing that Custonoasdot participate in these 3 use
cases.



Fig. 32. Use case participation error

Multiple use case participations shared by multgiities but not coordinated by a
contract entity can be found in the lattice as denwith own use cases but no own
objects. For 17/20 students the lattice containech 2 node where entities may
impose different sequence constraints on use caseuon order resulting in
deadlock. Fig 33 contains as example of such a.node

Fig. 33. Contract entity omission

Finally, the FCA models helped in reasoning ovedealimg choices made by students.
From this lattice, the corresponding UML class daag was distilled and feeded back to the
student with the found anomalies.

6. Related work



FCA has been used in various application domaidsidiing knowledge discovery, software
engineering, information retrieval, etc. (Poelmatsal. 2010a). Notoriuos applications in
knowledge discovery include the identification ohaestic violence from statements made by
victims of a violent incident (Poelmans et al. 20B8elmans et al. 2010c), human trafficking
suspects (Poelmans et al. 2011) and radicalizifgests (Elzinga et al. 2010) from
observational police reports and quality of caseiés from patient treatment data (Poelmans
et al. 2010b).

One of the first papers applying concept latticessoftware analysis (Krone et al. 1996)
analyzed the relationships between source codeepiand preprocessor variables in Unix
system software. Later on multiple papers appeareddentifying modules or classes in
legacy system code (e.g. Siff et al. 1997). Moreently dynamic code analysis gained
interests, e.g. Ammons et al. (2003) analyzed di@ttraces which they clustered with FCA
to debug specifications in temporal logic. In Singit(2005), Hesse et al. (2005) and Tilley et
al. (2005) an overview of FCA applications in sadte engineering published in 2003 or
earlier can be found. Also in requirements engingethere are some applications of FCA.
Typically, use case descriptions are written iurgtlanguage although sometimes controlled
vocabularies are used. Duwel (1999) and Duwel e(18198) used FCA to identify class
candidates in use case descriptions. The authorsideved the use cases as objects of a
formal context and the nouns identified within te&t were considered as a starting point for
a class hierarchy. Tilley et al, present a casgysapplying Duwel's approach to an Object.-Z
specification (Tilley et al. 2003). Richards et(@002) and Richards et al. (2002b) apply FCA
to use cases in an attempt to reconcile descriptimitten by different stakeholders using a
controlled vocabulary and grammar. According to thehors, the formal nature of this
controlled language facilitates the analysis of wsses to identify misunderstandings,
inconsistencies and conflicts. Moreover, similan@gpts and differences in terminology were
identified using concept lattices. FCA has alsonbased during the design phase of the
software engineering process. In this section weageed on early requirements engineering.

7. Conclusions

In this paper we showed the relevance of normalideds models in early requirements
engineering. FCA was used to derive a conceptéaftiom the use case-entity interaction
matrix. This lattice was used for syntactic veation and semantic validation of the UML
model and use case — entity interaction matrixelA# successive number of normalization
steps, a normalized UML class model is obtainech vdesirable properties such as the
absence of many-to-many, optional-to-optional aeflexive associations. The iterative
process of analyzing and improving the requiremartifacts was framed in C-K theory. The
C-K loop consists of 4 main phases, elaboratiorfization, modification and validation. In
each phase, the visualization of FCA plays a plvota.
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