Semi-Automated Knowledge Discovery: Identifying and Profiling Human Trafficking

Jonas Poelmans1,3, Paul Elzinga2, Sergei O. Kuznetsov3

1KU Leuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven, Belgium

2Amsterdam-Amstelland Police, James Wattstraat 84, 1000 CG Amsterdam, The Netherlands

3National Research University Higher School of Economics (HSE), Pokrovskiy bd. 11

101000 Moscow, Russia

Jonas.Poelmans@gmail.com

Paul.Elzinga@amsterdam.politie.nl

Skuznetsov@hse.ru

Dr. Jonas Poelmans graduated in 2007 as a “Master in Computer Science” with distinction at the “Katholieke Universiteit Leuven”. In 2010 he obtained his degree of “Doctor in Applied Economics” at the “Katholieke Universiteit Leuven”. He authored more than 45 papers published in international peer reviewed conferences and journals. He won twice the best paper award at the “Industrial Conference on Data Mining” and edited several conference and workshop proceeding volumes. His mains interests include Formal Concept Analysis and Data Mining.

Paul Elzinga received his MSc degree in Econometrics from the University of Groningen in 1984 and his MSc degree in Knowledge and Information engineering from the Middlesex University of London in 1995. Paul Elzinga received his PhD degree in Economics and Business science at the University of Amsterdam in 2011. Paul Elzinga started his career with developing information systems for the Groningen Police Department in 1983. He developed many information systems of various kinds, from dispatching systems to knowledge based systems for monitoring potential criminals. He was information architect at the national police department from 2002 to 2005 and designed the XML based national full text inquiry database.
where all incidents and all criminal records of the Dutch police are made available for information analysis. In 2005 he continued his career at the Amsterdam-Amstelland Police Department where he worked on knowledge-based information systems and started his PhD entitled “Formalizing the concepts of crimes and criminals” in 2007. At this moment he is working as project leader in several innovative data- and text-mining projects within different police organizations.

Sergei O.Kuznetsov is since 2006 the head of Applied Mathematics and Information Science Departement at the National Research University Higher School of Economics in Moscow, Russian Federation. In 1985 he graduated from the Moscow Institute for Physics and Technology, Department of Applied Mathematics and Control. In 1990 he obtained his Candidate of Science Degree (PhD equivalent), dissertation “Improving Performance of Expert Systems”. In 2002 he obtained his Doctor of Science Degree (Habilitation) for “Theory of Learning in Concept Lattices”. Between 1985-2006 he was (Senior) Researcher at the All-Russia Institute for Scientific and Technical Information (VINITI), Moscow. Between 1999-2004 he was Humboldt Fellow and invited professor at the Dresden Technical University.
Semi-Automated Knowledge Discovery: Identifying and Profiling Human Trafficking

We propose an iterative and human-centred knowledge discovery methodology based on Formal Concept Analysis (FCA). The proposed approach recognizes the important role of the domain expert in mining real world enterprise applications and makes a use of specific domain knowledge, including human intelligence and domain-specific constraints. Our approach was empirically validated at the Amsterdam-Amstelland police to identify suspects and victims of human trafficking in 266157 suspicious activity reports. Based on guidelines of the Attorney Generals of the Netherlands we first defined multiple early warning indicators that were used to index the police reports. Using concept lattices we revealed numerous unknown human trafficking and loverboy suspects. In depth investigation by the police resulted in a confirmation of their involvement in illegal activities resulting in actual arrestments been made. Our human-centred approach was embedded into operational policing practice and is now successfully used on a daily basis to cope with the vastly growing amount of unstructured information.

Keywords: Formal Concept Analysis, Semi-automated knowledge discovery, human trafficking

Subject classification codes: include these here if the journal requires them

1. Introduction

Traditional fully automated knowledge discovery methods proved to be useful in many areas. However the major drawback of all automated and supervised machine learning techniques, including decision trees, is that these algorithms assume that the underlying concepts of the data are clearly defined, which is often not the case. These techniques allow almost no interaction between the human actor and the tool and fail at incorporating valuable expert knowledge into the discovery process (Keim 2002), which is needed to go beyond the fool’s gold (Smyth et al. 2002). In the paper by Hollywood et al. (2009) these problems were clearly addressed in the context of terrorist threat
assessment. The central question was whether it is possible to find terrorists with traditional fully automated data mining techniques and the answer was no. Because of the nature of the available data and the presence of human expertise which is hard to formalize, one needs in certain cases an interactive methodology. Human centred Knowledge Discovery in Databases (KDD) refers to the constitutive nature of human interpretation for the discovery of knowledge and stresses the complex interactive process of KDD as being led by human thought (Brachman and Anand 1996). The aim is to make it easy, practical and convenient to explore very large databases for organisations and users with vast amounts of data but without years of training as data analysts (Fayyad and Uthurusamy 2002). A significant part of the art of data mining is the user’s intuition with respect to the tools (Marchionini 2006). In this paper we propose a semi-automated and human-centred knowledge discovery methodology based on Formal Concept Analysis (FCA, Ganter and Wille 1999). The proposed approach recognizes the important role of the domain expert in mining real world enterprise applications and makes a use of specific domain knowledge, including human intelligence and domain-specific constraints. To illustrate its effectiveness, we report on a real life case study on using the methodology at the Amsterdam-Amstelland police in the Netherlands aimed at identifying and profiling human trafficking.

In 2009, Amsterdam was shocked by the brute murder on a Hungarian 19 year old woman who was forced to work in prostitution but resisted to her pimps. In countries such as the Netherlands, prostitution is legalized but severe penalties can be given to criminals who force a girl to have sex for money. Girls of Dutch nationality who were forced to work in prostitution in Amsterdam typically fell prey to a loverboy. The loverboy is a relatively new phenomenon (Bovenkerk et al. 2004) in the Netherlands. A loverboy is a man, mostly with Moroccan, Antillean or Turkish roots
who makes a girl fall in love with him and then uses her emotional dependency to force her to work as a prostitute. Forcing girls and women in prostitution through a loverboy approach is seen as a special kind of human trafficking in the Netherlands (article 250a of the code of criminal law).

Human trafficking is the fastest growing criminal industry in the world, with the total annual revenue for trafficking in persons estimated to be between $5 billion and $9 billion (United Nations 2004). The council of Europe states that “people trafficking has reached epidemic proportions over the past decade, with a global annual market of about $42.5 billion” (Equality division 2006). Rough estimates suggest that 700,000 to 2 million women and girls are trafficked across international borders every year (O’Neill Richard 1999, U.S. Department 2008). The impoverished former Eastern block countries such as Albania, Moldova, Romania, Hungary, Bulgaria, Russia, Belarus and Ukraine have been identified as major trafficking source countries for women and children (Levchenko 1999, Dettmeijer-Vermeulen et al. 2008). Since the fall of the Iron curtain starting in 1989 in Poland, millions of Central and Eastern European girls and women have been victims of human trafficking and were forced to work in the European sex industry (estimated 175,000 to 200,000 yearly1).

Because of the overload of mostly textual information in police databases and a lack of adequate supporting instruments to make this data more accessible, it becomes increasingly difficult to identify potential suspects and gather all available information about them (Poelmans et al. 2011). In this paper we aimed at describing the new investigation procedures we developed with the Amsterdam-Amstelland police for identifying and profiling potential suspects from this large amount of textual reports.

1 Eerste rapportage Nationaal Rapporteur Mensenhandel
Since the introduction of Intelligence Led Policing (Collier 2006) in 2005, a management paradigm for police organizations which aims at gathering and using information to allow for pro-active identification of suspects, police officers are required to write down everything suspicious they noticed during motor vehicle inspections, police patrols, etc. These observational reports, 34,817 in 2005, 40,703 in 2006, 53,583 in 2007, 69,470 in 2008 and 67,584 in 2009, may contain indications that can help reveal individuals who are involved in human trafficking, forced prostitution, terrorist activities, etc. However, till date almost no analyses were performed on these documents.

Concept lattices are used to display the persons found in the available police reports and the early warning indicators observed for each of them. Police officers can then extract persons in whom they are interested and create a detailed profile for them. This profile can be represented by a concept lattice which displays all available information about this suspect, including social structure and temporal information, in one appealing visual picture. Our approach promotes efficient decision-making and significantly outperformed the currently employed manual investigation methods. The concept lattices revealed some cases where there were sufficient indications for starting an in-depth investigation. We applied FCA and its temporal variant to zoom in on some real life cases and suspects, resulting in actual arrests being made and/or illegal prostitution locations closed down.

The remainder of this paper is composed as follows. In section 2 we give background information on human trafficking, forced prostitution and the guidelines that were developed by the Attorney Generals of the Netherlands to help detect trafficking and loverboy suspects. In section 3 we describe Formal Concept Analysis and in section 4 the dataset. In section 5 we describe our analysis method to detect and
profile potential suspects. In section 6 we describe some real life cases where the suspects were found with FCA. Section 7 contains a discussion of our work. Finally, section 8 concludes the paper.

2. Human trafficking and forced prostitution

The most popular destinations for trafficked women are countries where prostitution is legal such as the Netherlands (Hughes 2000). According to Shelley (1999) most of these women are in conditions of slavery. A survey of women from central and Eastern Europe in the Netherlands, found that 80% of them were kept in isolation and forced to work long hours for no pay and were physically and emotionally abused by pimps, traffickers and male buyers (Hyde and Denisenko 1997). Human trafficking and illegal forced prostitution are typically organized by international crime networks who make large amounts of money through the exploitation of young women and children. The money made by the criminal networks does not stay in poor communities but is laundered through bank accounts of criminal bosses in financial centers such as the US, Western Europe and off-shore accounts (Savona 1998). In Amsterdam, in particular Bulgarian and Hungarian criminals are active. Women who have been forced into prostitution can keep little or nothing of the money they earned. If they manage to escape they will return home in poverty and physically and emotionally damaged for life (Farley and Barkan 1998). One of her only ways to escape the unwanted sex with multiple men each day is becoming a perpetrator herself. Women who fell prey to traffickers sometimes return home to recruit new victims. According to (Hughes and Denisova 2003), 70% of pimps in Ukraine are women. A recruiter gets US $2000 to $5000 for each woman recruited. Pimps can make 5 to 20 times as much from a woman as they paid for her in a short time.
2.1 Human trafficking model

Victims of human trafficking rarely make an official statement to the police. The human trafficking team of the Amsterdam-Amstelland police is installed to proactively search police databases for any signals of human trafficking. Unfortunately, this turns out to be a laborious task. The investigators have to manually read and analyze the police reports, one by one, because only an estimated 15% of the information containing human trafficking indications has been labeled as such by police officers. As soon as the investigators find sufficient indications against a person, a document based on section 273f of the code of criminal law is composed for the person under scrutiny. Based on this report, a request is sent to the Public Prosecutor to start an in-depth investigation against the potential suspects. After permission is received from the Public Prosecutor, the use of special investigation techniques such as phone taps and observation teams is allowed.

The Attorney Generals of the Netherlands developed a set of guidelines based on which police forces can gather evidence of human trafficking and forced prostitution against potential suspects. These guidelines mention indications of human trafficking and forced prostitution and define in which cases pro-active intervention by police may be necessary. This information had not yet been used to actively search police databases for suspicious activity reports containing human trafficking indicators. Table 1 contains the five main types of indicators contained in these guidelines and 2 illustrative examples for each of them. The full list of indicators can be found in Appendix A.

Table 1. Human trafficking indicators

<table>
<thead>
<tr>
<th>Dependency of the exploiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The woman has a fake or counterfeit passport</td>
</tr>
<tr>
<td>Deprivation of liberty</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>• The woman does not know properly what her working address is</td>
</tr>
<tr>
<td>Being forced to work under bad circumstances</td>
</tr>
<tr>
<td>• The victim does not receive necessary medical treatment</td>
</tr>
<tr>
<td>• The victim does not carry her own identity papers</td>
</tr>
<tr>
<td>Violation of bodily integrity of the victim</td>
</tr>
<tr>
<td>• Threatened or confronted with violence</td>
</tr>
<tr>
<td>• Certain things that may indicate the dependence on the exploiter such as tattoos or voodoo material.</td>
</tr>
<tr>
<td>Non-incidental pattern of abuse by suspect(s)</td>
</tr>
<tr>
<td>• Working at different places from time to time</td>
</tr>
<tr>
<td>• Tips of reliable third parties</td>
</tr>
</tbody>
</table>

2.2 Loverboy model

Another model we discuss was developed by Bullens and Van Horn (2000) for the identification of loverboys who typically force girls of Dutch nationality into prostitution. Loverboys use their love affair with a woman to force her to work in prostitution. Forcing girls and women in prostitution through a loverboy approach is seen as a special kind of human trafficking in the Netherlands (article 250a of the code
of criminal law). This model is a resource used by the Amsterdam-Amstelland police during the trainings of police officers about this topic. A typical loverboy approach consists of 3 main phases. Table 2 contains the four main types of indicators and 2 illustrative examples for each of them. The full list of indicators can be found in Appendix B.

Table 2. Loverboy indicators

<table>
<thead>
<tr>
<th>Preparatory activities to recruit girls</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Actual recruitment and arranging residence and shelter locations for the girls</td>
</tr>
<tr>
<td>• During the first meeting, they estimate how vulnerable a girl is to attention and flattery. Their sensitivity to attention, presents, etc. made her fall in love with the pimp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forcing her into prostitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deflowering and forcible rape: In particular for Islamic girls, deflowering and the threat of being brought back home increase their anxiety to say no to the pimp's demands, because it can result in her abandonment by her family.</td>
</tr>
<tr>
<td>• Blackmailing: If the girls don’t want to work in prostitution, the pimps threaten to bring her back to her parents.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keeping the girl in prostitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Emotional dependence: Feelings of love, nobody else to support her, the pimp is the father of her child, etc.</td>
</tr>
<tr>
<td>• Social isolation: She becomes isolated from the outside world and only meets people from the prostitution circuit.</td>
</tr>
</tbody>
</table>
The pimp will also try to protect his organization

- Internal protection measurements: He will make sure that the girls are constantly under surveillance and with the threat of physical violence he completely dominates her life.
- External protection: The pimp will threaten, bribe, interrogate, etc. the girls who have been in contact with the police.

3. Formal Concept Analysis

FCA arose twenty-five years ago as a part of applied lattice theory (Wille 1982, Ganter and Wille 1999) and has over the years grown into a powerful tool for data analysis (Lakhal and Stumme 2005, Priss 2006, Poelmans et al. 2010c), data visualization (Doerfel et al. 2012), and information retrieval (Carpineto and Romano 2004, Poelmans et al. 2012a). The usage of FCA for browsing text collections has been suggested before, e.g., by Cole (2000). Here we make a stress on using FCA in an actionable environment for discovering different types of knowledge in unstructured text. FCA has been applied in a wide range of domains, including medicine (Schnabel 2002, Belohlavek et al. 2011), biology (Motameny et al. 2008), social sciences, linguistics (Priss 2004), ontology (Cimiano et al. 2004) and software engineering (Eisenbarth et al. 2003). For instance, FCA has been applied to analyzing data of children with diabetes (Scheich et al. 1993), for duplicate detection in web search results (Ignatov and Kuznetsov 2009), for developing a recommender system in internet advertisement (Ignatov and Kuznetsov 2008), and for an IT security management system (Becker et al. 2000). In (Eklund et al. 2004, Domingo and Eklund 2005), FCA was used as a visualization technique that allows human actors to quickly gain insight by browsing through information. We previously applied FCA to a police dataset containing
domestic violence cases and were able to establish its practical usefulness (Poelmans et al. 2010a). FCA is particularly suited for exploratory data analysis because of its human-centeredness (Hereth et al. 2003, Valtchev et al. 2004). It is a fundamental principle that the generation of knowledge from information is promoted by representations that make the inherent logical structure of the information transparent. FCA builds on the model that concepts are the fundamental units of human thought. Hence, the basic structures of logic and logical structure of information are based on concepts and concept systems (Stumme et al. 1998, Stumme 2002). Consequently, FCA uses the mathematical abstraction of the concept lattice to describe systems of concepts to support human actors in their information discovery and knowledge creation practice (Wille 2002).

A formal context is a triple of sets \((G, M, I)\), where \(G\) is interpreted as a set of objects, \(M\) is interpreted as a set of attributes, and binary incidence relation \(I \subseteq G \times M\) defines attributes describing particular objects, i.e. \((x, y) \in I\) means object \(x\) has attribute \(y\). A formal context can be represented by a cross table with set of rows \(G\), set of columns \(M\), where each cross corresponds to an element of relation \(I\), i.e. says that a particular object has a particular attribute. An example of a cross table is displayed in Table 3. Here, suspicious activity reports (they make objects of the context) are related to a number of terms (which make attributes of the context): a report is related to a term if the report contains this term. The dataset in Table 3 is an excerpt from the one we used in our research.

Table 3. Example of a formal context

<table>
<thead>
<tr>
<th></th>
<th>prostitution</th>
<th>loverboy</th>
<th>violence</th>
<th>expensive cars</th>
<th>large amount of money</th>
<th>Bulgarian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report 2: 26-07-2008</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The central notion of FCA is that of a (formal) concept. The way one looks at concepts in FCA is in line with the international standard ISO 704, which gives the following definition. A concept is considered to be a unit of thought constituted of two parts: its extent and its intent (Wille 1982, Ganter and Wille 1999). The extent consists of all objects subsumed by the concept, while the intent consists of all attributes shared by those objects. Let us illustrate the notion of a formal concept for the formal context in Table 3. For a set of objects $O \subseteq G$, the set of their common attributes, denoted by O', is given by the following formula:

$$A = O' = \{m \in M | \forall g \in O : (g, m) \in I\}$$

Take, for example, the attributes that describe report 5 in Table 3: “expensive cars” and “large amount of money”. By collecting all reports of this context that share these attributes, we get the set $O \subseteq G$ consisting of reports 2, 3, and 5. Formally, this operation is given by the following formula:

$$O = A' = \{g \in G | \forall m \in A : (g, m) \in I\}$$

In other words, O is the set of all objects sharing all attributes of A, and A is the set of all attributes shared by all objects contained in O. Each such pair (O, A) is called a formal concept (or just concept) of the given context such that $A = O'$ and $O' = A$. The set A is called the intent, while O is called the extent of the (formal) concept (O, A).

There is a natural hierarchical ordering relation defined on the concepts of a given context that is called the subconcept-superconcept relation.
\((O_1, A_1) \leq (O_2, A_2) \iff (O_1 \subseteq O_2 \iff A_2 \subseteq A_1)\)

A concept \(C_1 = (O_1, A_1)\) is called a \textit{subconcept} of a concept \(C_2 = (O_2, A_2)\) (or equivalently, \(C_2\) is called a \textit{superconcept} of a concept \(C_1\)) if and only if \(C_1 \leq C_2\), i.e. the extent of \(C_1\) is a subset of the extent of \(C_2\) (or equivalently, the intent of \(C_1\) is a superset of the intent of \(C_2\)). For example, the concept with intent “expensive cars”, “large amount of money” and “violence” is a subconcept of the concept with intent “expensive cars” and “large amount of money”. With reference to Table 3, the extent of the latter is composed of reports 2 and 3, while the extent of the former is composed of reports 2, 3 and 5.

The set of all concepts of a formal context ordered by the subconcept-superconcept relations makes a mathematical structure known as a \textit{complete lattice}. The complete lattice of concepts is called the \textit{concept lattice} of the context. A concept lattice is visualized by its \textit{(labeled) line diagram}, which is based on the \textit{covering relation} associated to the ordering relation. Recall that for a partial order \((P, \geq)\) and two elements \(x, y \in P\) one has \(x \ Covers \ y\) \((x \ covers \ y)\) if \(x \geq y\) and there is no \(z \in P\) such that \(x > z, z > y\). A diagram uniquely determines a lattice, so one often uses these terms interchangeably.

For example, the line diagram in Figure 1 represents the concept lattice of the formal context given by Table 3. The circles or nodes in this line diagram represent the formal concepts. The shaded boxes (upward) linked to a node represent the attributes used to name the concept. The non-shaded boxes (downward) linked to a node represent the objects used to name the concept. The information contained in the formal context of Table 3 can be distilled from the line diagram in Figure 1 by applying the following reading rule: an object “g” is described by an attribute “m” if and only if there is an ascending path from the node named “g” to the node named “m.” For example, report 5 is described by the attributes “expensive cars” and “large amount of money.”
Retrieving the extent of a formal concept from a line diagram such as the one in Figure 1 implies collecting all objects on all paths leading down from the corresponding node. In this example, the objects associated with the third concept in row 3 are reports 2 and 3. To retrieve the intent of a formal concept, one traces all paths leading up from the corresponding node in order to collect all attributes. In this example, the third concept in row 3 is defined by the attributes “violence,” “expensive cars” and “large amount of money”. The top and bottom concepts in the lattice are special: the top concept contains all objects in its extent, whereas the bottom concept contains all attributes in its intent. A concept is a subconcept of all concepts that can be reached by traveling upward and it will inherit all attributes associated with these superconcepts.

4. Dataset

Our dataset consists of 266,157 suspicious activity police reports, 34,817 in 2005, 40,703 in 2006, 53,583 in 2007, 69,470 in 2008 and 67,584 in 2009. These police reports are stored in the police databases as unstructured text documents and have the
following associated structured data fields: title of the incident, project code assigned by
the responsible officer, location of the incident and optionally a formally labeled
suspect, victim and/or other involved persons. The unstructured part of these suspicious
activity reports describes observations made by police officers during motor vehicle
inspections, during a police patrol, when a known person was seen at a certain place,
etc. These reports were extracted from the database and turned into html documents that
were indexed using the open source engine Lucene. An example of a report is displayed
in Figure 2.

Fig. 2. Example suspicious activity police report

5. Method

Our semi-automated investigation procedure consists of multiple iterations through the
square of Fig. 3. For background information on FCA and its applications in KDD we
refer the reader to Poelmans et al. (2010c). The guidelines of section 2 contain a non-
limitative list of indications and the indications can be subdivided into several main
categories. If at least one of the thesaurus elements corresponding to one of these
indications is present for a person or a group of persons, we might be dealing with a case of human trafficking or forced prostitution. These early warning indicators are cheap and reliable indicators that may indicate involvement of a person in illegal activities but may result in some false positives remaining, i.e. persons not involved in human trafficking. They serve to reduce the search space effectively without losing suspects. Then, in the reduced search space, concept lattices based on early and late indicators are created. The presence of a (set of) late indicator(s) is a strong hint that a person might be involved in illegal activities. Sometimes also a combination of early indicators presents an interesting challenge for further analysis. The concept lattice visualization allows the human expert to zoom in on aspects of the reduced search space and interactively explore the data. He can steer the KDD process and the lattice partial ordering gives him clues on where to look first.

From the 266,157 reports in our dataset, the relevant reports which contain at least one indicator are selected. Then, the persons mentioned in these reports are extracted and concept lattices are created, showing all the indications observed for each person. From these lattices containing persons, potential suspects or victims can be distilled and they can be further analyzed in detail with FCA and temporal concept lattices. If sufficient indications are available, a document based on article 273f of the code of criminal law can be created and sent to the Public Prosecutor with the request for using advanced intelligence gathering instruments such as observation teams, phone taps, etc. If the suspects are indeed involved in human trafficking and forced prostitution they can be taken into custody.
5.1 FCA analysis

Our method based on FCA consists of 4 main types of analysis that are performed:

- Concept exploration of the forced prostitution problem of Amsterdam: In (Poelmans et al. 2010a, Poelmans et al. 2010b) our FCA-based approach for automatically detecting domestic violence in unstructured text police reports is described in detail. We not only improved the domestic violence definition but also found multiple niche cases, confusing situations, faulty case labelings, etc. that were used to amongst others improve police training. Part of the research reported on in this paper such as the construction of the thesaurus, consisted of repeating the procedures described in our domestic violence case study papers.

- Identifying potential suspects: Concept lattices allow for the detection of potentially interesting links between independent observations made by different police officers. When grouping suspicious activity reports on a per person basis, the available information about the individuals is displayed in one intuitive and
understandable picture that facilitates efficient decision making on where to look. In particular persons lower in the lattice can be of interest since they combine multiple early warning indicators.

- Visual suspect profiling: Some FCA-based methods such as Temporal Concept Analysis (TCA) were developed to visually represent and analyze data with a temporal dimension (Wolff 2005). Temporal concept lattices were used in (Elzinga et al. 2010) to create visual profiles of potentially interesting terrorism subjects. Elzinga et al. (2012) used TCA in combination with nested line diagrams to analyze pedophile chat conversations. Schärfe et al. (2009) used a model of branching time in which there are alternative plans for the future corresponding to any possible choice of a person and used it as the basis of an Information and Communication Technology (ICT) toolset for supporting autism diagnosed teenagers. For creating the temporal profile of individual suspects, we use traditional FCA lattices and the timestamps of the police reports on which these lattices are based are used as object names. The nodes of the concept lattice can then be ordered chronologically.

- Social structure exploration: Concept lattices may help expose interesting persons related to each other, criminal networks, the role of certain suspects in these networks, etc. With police officers we discussed and compared various FCA-based visualization methods of criminal networks. Individual police reports mentioning network activity and the timestamps of these police reports together with each suspect name mentioned in these reports make object names.

5.2 Thesaurus

The thesaurus constructed for this research contains the terms and phrases used to detect the presence or absence of indicators in these police reports. This thesaurus consists of
two levels: the individual search terms and the term cluster level which was used to construct the lattices in this work. We used a semi-automated approach as described in (Poelmans et al. 2010a). Search terms and term clusters were defined in collaboration with experts of the anti-human trafficking team and gradually improved by validating their effectiveness on subsets of the available police reports. Each of these search terms were thoroughly analyzed for being sufficiently specific. The quality of the term clusters was determined based on their completeness. The validation of the quality of the thesaurus and the improvements were done by us and in conjunction with members of the anti-human trafficking team. Concept structures were created on multiple randomly selected subsets of the data. It was manually verified if all relevant indicators were found in these reports and no indicators were falsely attributed to these reports. For example, the term cluster “prostitute” in the end contained more than 20 different terms such as “prostituee”, “dames van lichte zeden”, “prosti”, “geisha”, etc. used by officers to describe a prostitute in their textual reports. To create the formal contexts in this paper, the term clusters in the thesaurus were used as attributes and the police reports as objects. A prototype of the FCA-based toolset CORDIET was used during the analysis process (Poelmans et al. 2010d, Poelmans et al. 2012b).

6. Analysis and results

Traditional data mining techniques often focus on automating the knowledge discovery process as much as possible. Since the detection of actual suspects in large amounts of unstructured text police reports is still a process in which the human expert should play a central role, we did not want to replace him, but rather empower him in his knowledge discovery task. We were looking for a semi-automated approach and in this section we try to illustrate the main reasons why FCA was ideal for this type of police work. With FCA at the core, we were able to offer police officers an approach which they could use
to interactively explore and gain insight into the data to find cases of interest to them on which they could zoom in or out. Section 6.1 shows two lattices which were of significant interest to investigators of the anti-human trafficking team. For the first time, the overload of observational reports was transformed into visual artifacts that first showed them a set of 4895 persons and a subset of 1255 eastern Europeans potentially of interest to the police and the indicators observed for each of them. The lattices visually summarize the data and make the data more easily accessible for officers who want to efficiently explore it and extract unknown suspects. When zooming in on the nodes on the left of the lattice in Fig. 4, we found a concept with two underaged girls in its extent and with suspicious loverboy indications in its intent. Section 6.2 describes the analysis of the first girl which led us to the discovery of the first loverboy suspect. We showcase how the discovery of a potential victim was followed by querying our dataset for reports about this girl using CORDIET and analyzing the found textual reports which led us to our pimp for whom a lattice summarizing available evidence in the data was created. 12 reports and indicators found in them were used to create a lattice. This lattice showed that there was sufficient evidence for the officers to compose a document to obtain permission for special investigative techniques from the Public Prosecutor. Section 6.3 also shows how a concept lattice diagram can give insight into the evolution of a person over time, in this case of our second loverboy suspect. We then chose to highlight the case of the Turkish human trafficking network in section 6.4. From the lattice in Fig. 5, two potential suspects were distilled since they were regularly spotted performing illegal activities. We found the name of a bar was mentioned a couple of times and used this information to build the concept lattice of section 6.4. This lattice was of particular interest to police officers since FCA quickly gave them a concise overview of the persons that were observed to be involved around a suspicious location
and the lattice structure helped them to identify the most important suspects in this network. In particular the visualization of persons in a lattice was helpful during their exploration. The partial ordering on concepts gave them clues on where to look first. The lower a person appears in the lattice, the more indicators he has. Section 6.5 showcases how the FCA visualization was used to combine temporal and social structure information in one easy to interpret picture. Such profile lattices were of significant interest to police officers since they allow for quick decision making on whether or not a person might be involved in illegal activities. Moreover, the lattices may help infer the roles of the persons mentioned in the network. The fifth case in section 6.6 is of interest, since it shows how a concept lattice can give insight into the evolution of a person over time, in this case, how to detect the special case of a woman who was first victim and then became a suspect. The remaining part of this section describes cases of human trafficking and forced prostitution which were further investigated with FCA; two of them were identified in the lattice in Fig. 4 and three of them in the lattice in Fig. 5. Note that real names were replaced by false names because of privacy reasons.

6.1 Detection of suspects of human trafficking and forced prostitution

Multiple concept lattices were created for detecting human trafficking suspects in a set of persons. Each of these concept lattices contained over 200 concepts and were based on different sets of attributes. Since the format of this paper does not allow to visualize the entire lattices in a readable way, we chose to simplify these lattices and zoomed in on their most important aspects. Our first lattice described behavior of 4895 persons extracted from the police reports in our dataset. Each of them had at least one indicator. The attributes are based on the five types of indicators discussed in the models of section 2.1 and 2.2. Additional attributes can be selected and deselected during analysis.
Analysis of the node containing 11 persons and attributes “violation of body integrity”, “minors involved”, “dependency on exploiter”, “coercion”, “Antillean and Surinamian nationality” in the lattice diagram revealed 2 girls of Dutch nationality who were younger than 18. This led us to the discovery of an unknown loverboy suspect described in section 6.2. The second loverboy suspect was found by zooming in on the concept with 4 persons and attributes “coercion”, “restriction of freedom”, “violation of body integrity”, “Antillean and Surinamian nationality”, “dependency on exploiter” and is described in section 6.3.

Fig. 4. Human trafficking suspect detection lattice diagram
Fig. 5 presents a diagram of the lattice for 1255 Bulgarian, Hungarian and Romanian persons. The concepts related to some of the suspects of section 6.4 were found on the right and bottom part of the lattice diagram and have 10 persons in its extent and attributes “legitimation problems” and “violation basic right of freedom”, 12 objects in the extent and attribute “dependency on exploiter”, etc. The concept related to the main suspect of section 6.5 was found on the left and bottom part of the lattice diagram and has 1 object in its extent and attributes “violation of body integrity”, “coercion”, “violation basic right of freedom”, “avoiding involvement of police”, “large money amount”. The woman of section 6.6 was found in the concept with one object in the extent and attributes “coercion”, “violation of body integrity”, “person does not know living address”, “avoiding involvement of police”. In the following 2 sections we will describe and profile each of these suspects in detail.

Fig. 5. Human trafficking suspect detection lattice
6.2 Case 1: Loverboy suspect B

In this section we first describe the analysis of the underaged girl found in the lattice diagram of Fig. 4. In our dataset, there were 3 reports available about girl H. The reports about this girl led us to the discovery of loverboy suspect B. Fig. 6. shows the case numbers of the found reports in the “search results” field and the first report with highlighting of thesaurus elements about this girl in the “selected report” field.

Fig. 6. Possible loverboy victim

The first report (26-11-2008) contains the notification of the police by a youth aid organization in Alkmaar about girl H. They report a suspicious tattoo on her wrist containing the name "B". This "B" refers to her boyfriend who carries the same first name, is 30 years old and of Surinamian origin.
The second report was written by a police officer who works in the red light district and knows many women working in brothels or behind the windows. During a patrol he saw H working as a prostitute, made a chat with her and observed suspicious facts which made him write the report. The report in Fig. 7 shows four suspicious facts reported by the officer. First, an unbelievable story why she works as a prostitute: a bet between girlfriends if someone would dare to work as a prostitute. Second, the tattoos of which one tattoo is mentioned in the document of Fig. 6 (“B”) and a new one on her belly. Third the injuries, she has scratches on her arm (possibly from a fight) and burns on her leg. According to the victim, she has dropped a hot iron on her leg and had an accident with a gourmet set. Fourth is the observation of making long working days. The third document in Fig. 8 (December 21st 2008) shows an observation of the victim walking with the possible suspect.

In the report from Fig. 8 the police officer reports he saw the victim and a man walking
close to each other. The police officer knows the man and knows he is active in the world of prostitution. When the man saw the officer, he immediately took some distance of the victim. As soon they have passed the officer, they walk close together and into a well known street where prostitutes work behind the windows. The first name of the person is B, the same name which is tattooed on the victim’s wrist, and the description of the person is about the same as described by the youth aid organisation. This information signals the man is the possible loverboy of the victim. The three reports together give serious presumptions of B being a loverboy with H being the victim. The next step is investigating B. We need serious indications B is really involved in forced prostitution. 12 observational reports were found for B and the resulting lattice is shown in Fig. 9.

![Lattice diagram of B](image)

Fig. 9. Lattice diagram of B

Investigating these reports shows that he frequently visits the red light district and has strong relationships with other pimps. One of these pimps is the suspect of the loverboy case in section 6.3. From the 6 observations where B was seen in the red light district, four are violence related, including the observation of H's suspicious burn wounds. The
other violence related observations are situations of fights with customers who are unwilling to leave or pay. Such violence related observations are related to pimps who want to protect their prostitutes from customers and competing gangs. In the Netherlands, prostitution is legal, so each prostitute has the right to ask the police to protect her. The violence observations of the suspect strengthened the suspicion of B being the pimp of H. Moreover, we found another girl R who was also a potential victim of him. These indications were enough to create a summary report and send a request for using special investigation techniques to the Public Prosecutor.

6.3 Case 2: Loverboy suspect A

In this section we describe a loverboy case which we exposed by gathering evidence from multiple observational reports. This person was found by analyzing the lattice in Fig. 4 by zooming in on Antillean, Moroccan and Turkish persons. Victim V is a girl of Dutch nationality who officially lived in the Netherlands but fell prey to a loverboy of originally Antillean nationality. We found multiple indications in filed suspicious activity reports that referred to elements of the model in section 2. The lattice of suspect A and victim V is displayed in Fig. 10.

On 27-04-2006, Suspect A and victim V were noticed for the first time on the streets during a police patrol. They had a serious argument with each other and suspect A took the cell phone with force out of V's hand. When the police intervened they claimed nothing happened. In the police station she declared that she works voluntarily in prostitution although her words were not convincing to the officer. On 15-08-2006 an Amsterdam citizen sent an email to the police about young Antillean men who constantly surveillance some women in the red light district. Amongst other suspect A brings food and drinks to the women who are not allowed to leave their rooms. On 31-10-2006 during a police patrol, victim V was noticed while she got out of a car and
quickly ran inside. The driver of the car was suspect A. She told the police later on that she was brought to and picked up every day at this apartment by her boyfriend suspect A. The police noticed her dismayed and timid attitude and asked again if she was forced to work in prostitution. In a non-convincing way she responded that she did her job voluntarily. On 15-09-2006, suspect A had to stay in jail for 6 hours because of illegal weapon possession. When the police asked about his income he told he earned good money thanks to his girlfriend who works in prostitution. On 2-11-2006, officers noticed the car of victim V was parked on the road and two Negroid men were inside. The driver, suspect A got out of the car and yelled to the girl he was picking up at her apartment, that she had to hurry up. The whole scene looked very intimidating to the police and it turned out the girl was victim V. Suspicious was that the car was registered on the name of V while V had no driver license. On 28-03-2007, victim B came to the police office to ask if she was allowed to work with a badly damaged id-document or if she had to wait for a new one. She mentioned that suspect A was her ex-boyfriend and that she and victim V were victims of extortion but she did not dare to make an official statement to the police. Afterwards, the police checked a home where they found 2 women: victim V and B. Victim V had a big tattoo on her right shoulder and a smaller tattoo on her upper arm. On 19-08-2007, suspect A was involved in a knifing incident in the red light district between 3 men and one of these men got seriously injured. This man wanted sex with victim V, but suspect A did not allow this because of the man's ethnicity, which caused the fight. On the camera surveillance videos, victim V was observed to accompany suspect A all the time. On 16-10-2007, officers observed that suspect A who walked over the streets said “hi” to all women who passed by.
6.4 Case 3: Turkish human trafficking network

By analyzing the diagram of the concept lattice (Fig. 5) based on observational reports, we were able to expose a criminal network operating in Amsterdam, involved in illegal and forced prostitution. The concept lattice in Fig. 11 contains the 61 persons and indicators found in the police reports mentioning activity around a bar in Amsterdam that played a central role in the network's activities and was closed down in 2009. Multiple suspects operating in this network were found and some of the observations will be described in this section. The most important suspects are the persons with indication “legitimation problems”, since they were carrying the id papers of the girls. The police reports contained many indications of illegal and forced prostitution taking place, activities that were run by the owners or acquaintances of the owners of the bar. We found out the bar was used as a central hub, where mostly Turkish men met up with
Bulgarian girls who had been forced into prostitution and took them to another location.

We found at least two pimps who have multiple girls working for them.

Fig. 11. Concept lattice of human trafficking network

Starting in 2007, the first observations were made that hinted at illegal and forced prostitution being organized from within this bar. On 2 June 2008, victim H declared to the police that she was forced to work as a prostitute in the bar and did not get any money for that. She was never allowed to leave the house alone and the door of her apartment was locked from the outside such that she couldn't leave. On 12 December 2008, suspect A came out of the bar with a girl, their statements to the police did not match and moreover the girl was dressed in sexy clothing. Most likely the girl works as a prostitute and the driver is her pimp. On 25 January 2009, police officers stopped a car and behind the wheel was suspect B and next to him the victim E. We found woman E is often sitting at the bar and also the car is regularly parked in front of the bar. Suspect B gave the passport of victim E to the police and afterwards he placed it back in his pocket. Moreover, suspect B was carrying a large amount of cash money, 1000 euros in his pocket. On 26 January 2009, police did a check-up on the guests in the bar. One girl
was new and told she only just arrived by train, she had no train tickets with her and she did not know her living address. Suspect B was also there and told the police he is a car trader so he travels a lot between Bulgaria and Netherlands. An excuse typically used by criminals responsible for the logistics of a trafficking network. Also victim E and two other girls, victims F and G were there. On 20 February 2009, police officers saw suspect A talking to the driver of a car with Bulgarian license plate. Afterwards he forced a girl to follow him and when the police asked about their relationship they told they had been friends for 3 months. The girl did not have her id-papers with her and the police went to her living address. In the house there were many mattresses and another girl. Both of them told they have no job. Most likely the house serves as an illegal prostitution location for the criminal gang.

Sufficient indications were found and on 17 June 2009, an observation team observed the bar during the evening. Eastern European women were sitting at the bar and mostly Turkish, Moroccan and Eastern European men at the tables. During the evening, the team saw multiple girls that were taken out of the bar by a customer to a hotel, house, etc. and brought back to the bar afterwards. On 15 July 2009 sufficient evidence was gathered that illegal prostitution was organized from within this bar and authorities closed down the bar.

6.5 Case 4: Bulgarian male suspect

In this section we describe a profile of a Bulgarian suspect who was also operating in Amsterdam. The lattice in Fig. 12 shows that on 3 October 2007, suspect A was observed for the first time during a police patrol. An officer told the driver of a BMW car with Bulgarian license plate to turn right instead of left, the driver however ignored the instructions he received and quickly drove to the left with squeaking tires. The officer went after and in the end stopped the car. There were 3 men and one woman in
the car. Suspect B was the driver and suspect A was sitting next to him. On the backseat of the car were woman F and man K. They told the officer they only arrived 3 days ago in the Netherlands and are a couple. Suspect A and suspect B were taken to the police office, the man and the woman walked away and were followed by a second officer. He saw that K was strongly holding the hand of F and forced her into a home at the corner of a street in central Amsterdam. In the police office, suspect B was not able to tell the address of the apartment he was going to rent. Suspect A was carrying a large amount of cash money in his pocket.

![Profile lattice of individual suspect and his network](image)

Fig. 12. Profile lattice of individual suspect and his network

On 30 June 2009, woman J went to the police to ask if they could supervise the undersigning of a tenancy agreement of an apartment by man M who promised her accommodation. She told suspect A was intimidating and trying to scare away man M because suspect A wanted to rent the apartment for prostitution purposes. She was very
afraid of suspect A and the officer noted that she might have been forced in prostitution by him. On 30 October 2007, the police did a routine inspection of 2 individuals who were waiting with two motorcycles in a street that had been plagued by street robberies. This was the second observation of suspect A by the police and his motorcycle was registered by the name of woman C who had been involved in human trafficking activities as a victim. On 6 March 2009 the police received a tip that a fugitive Colombian criminal might be living at a certain address owned by professional criminal H. When they entered the apartment they found 2 men and 2 women of Bulgarian nationality. Man X and woman C declared to be on holiday and would go back to Bulgaria although we found suspect A was driving around with a scooter registered at C's name in 2007. Man Y declared he exports expensive cars to Bulgaria and regularly drives back and forth between Netherlands, an excuse typically used by suspects taking care of logistics of a human trafficking gang. Woman Z declared to work in prostitution in Groningen. When the officers left the apartment they found a motorcycle registered on the name of suspect A. The last observation dates back to 17 April 2009 when the police saw suspect A call somebody while standing in the entrance hall of prostitute R. He tells the police he has nothing to do with prostitution and owns a restaurant in Bulgaria. After his phone call he gives the cell phone to the prostitute.

To conclude, suspect A and B are most likely involved in human trafficking and there were sufficient signals found to request the use of special investigation techniques. Permission was granted, suspicions were confirmed and both A and B were arrested by the police in 2010. Moreover these lattices showed some other people who are involved in the same gang and could be monitored.
6.6 Case 5: Hungarian woman both victim and suspect

In this section we describe a girl who was first a victim and then became a suspect of human trafficking. The concept lattice in Fig. 13 contains indications that SV1 has been forced to work in prostitution but now also takes part in criminal activities such as "facilitating" new girls in the prostitution circuit.

Fig. 13. Profile lattice of women who was first victim and then became suspect

On 16-03-2006, woman SV1 was for the first time observed by the police in the red light district. She did not speak Dutch, English or any other language spoken by police officers in the Netherlands. She had some indications of a woman who was lured into prostitution in her home country and trafficked to the Netherlands by a criminal gang. On 18-06-2006, the id-papers of SV1 and another girl I were checked and both pictures were very similar and had almost nothing in common with SV1 or I. Their id-cards were counterfeit, something regularly done by criminal gangs who took away
their real identity papers. On 19-02-2007, prostitute Q declared to the police she had to
give all her money to a Hungarian pimp who worked for a large criminal network. She
told that also SV1 works for one of the pimps of this network and most likely undergoes
the same treatment. On 19-10-2007, SV1 was observed with a new tattoo. Tattoos are
regularly used by gangs to clearly show whose property the girl is. On 29-05-2008,
officers saw SV1 underwent a breast enlargement.

From 2007 onwards, police officers started to see more and more indications
that SV1 is becoming a perpetrator herself by facilitating girls in the prostitution circuit.
On 02-07-2007, officers noticed that SV1 always pays the rent of the prostitution room
for a new Hungarian girl L. On 17-07-2007, the police asked the id-card of a woman
unknown to them who was working as a prostitute and resided in the Netherlands since
14 days. She did not know her living address, she lives with SV1 and was brought every
day from and to her working place by SV1. The police asked if she likes her job but she
had a very despairing look and could not answer their question. On 11-11-2007, police
went to the lodging-house keeper of a room often rented by a Dutch girl D who worked
in prostitution but mysteriously disappeared for multiple weeks. She told she was
threatened by a group of loverboys whom she met through SV1. They were trying to
force her to work for them and give the money she earns away, amongst others through
blackmailing, threatening and emotional manipulation. Amongst others on 15-11-2007,
police saw SV1 having long conversations with Hungarian men for whom she most
likely worked. She was granted more liberty than the other girls and seemed to function
as a kind of supervisor over the new girls who came into the business. On 13-05-2008,
police did a routine inspection of 3 girls in the red light district but they only spoke
Hungarian and SV1 was asked to translate their questions. When the police asked the
girls about the place where they lived, they became very nervous, tried to invent the
name of a hotel, etc. In the end they asked to SV1 if they could tell their real address but SV1 answered no and if the police would try to force them they must first call the men of their network to ask for permission. On 22-07-2008, officers did a routine inspection in the red light district. Woman C was found to live together with SV1 and when the police asked her about their living address, C turned to SV1 who said in Hungarian “say whatever you want but don’t tell the address”.

SV1 has many indications of a former victim of forced prostitution who had no better choice than becoming part of the criminal activities herself. She was part of a big network of Hungarian criminals that might be of interest to the police. In the beginning of 2011 the police gathered enough evidence against her, she was arrested and now serves her time in a Dutch prison.

7. Discussion

Human-centred data mining focuses on making the human expert efficiently interact with the data by supporting him instead of trying to replace him. We wanted to help him in the laborious task of searching through the police reports and coming up with potential suspects but did not want to decide for him who should be investigated. The main goal of our semi-automated KDD in unstructured text approach is the active involvement of the human expert who steers the knowledge discovery process, sifts through the data and is supported in his decision making by visualizations that make the massive amounts of data that used to numb domain experts accessible again.

Our real-life validation setting allowed us to understand which aspects of FCA were particularly interesting to users, in this case police officers:
• Summarization of conceptual structure of data in one picture: the lattices of section 6.1 were used to showcase this appealing aspect of FCA. The overload of reports was turned into an intuitively analysable artefact.

• An effective means to zoom in and out of the data: from the lattices in section 6.1, multiple persons were picked out and analysed in detail in the subsequent sections.

• Intuitive visualization with a partial ordering of the persons based on the indicators observed. Police officers were guided by the partial ordering of concepts when analyzing the lattices in section 6.1. Analysis indeed revealed they had more evidence to start a case against suspects lower in the lattice than suspects higher in the lattice.

• Conceptual relationships between individual documents, persons, timestamps, etc. became visible whereas they often stay hidden when individual documents are analyzed one by one: the lattice of section 6.4 was used to showcase how a criminal network operating in Amsterdam was exposed. Multiple independent observations contained indications that illegal network activity was performed around one central location.

• Visualization of temporal evolution of a person: the lattices in section 6.2, 6.3 and 6.5 showed the evidence that became available over time against several human trafficking and loverboy suspects. Section 6.6 showed how a woman was first a victim and later on became a human trafficking suspect.

The literature on data mining describes many fully automated approaches for thesaurus building, classification, visualization, etc. Fully automated approaches have proven their usefulness for the analysis of certain crimes and criminals such as the identification of a serial killer's living address (Viclas system, Collins et al. 1998). The algorithm is based
on a domain with clear underlying rules and concepts and takes as input a carefully prepared large amount of structured information about the suspect. The powerful pattern matching and computational capabilities of the computer clearly outperform the human expert in this task.

Unfortunately, in complex domains such as the domain described in this paper, it is very difficult if not impossible to be successful with pure automated analysis techniques. Many of these automated techniques may have serious drawbacks for complex domains with one or more of the following properties:

- **Black-box classification is not acceptable:** police officers need insight into the reasons behind a decision, behind an assigned label, etc. Each decision to label a suspect should be grounded in evidence and be accompanied by a detailed report of the indications observed. False positives and false negatives, i.e. real criminals that remained undetected, are unacceptable given the severity of the crimes in which the persons are potentially involved and the penalties they may receive.

- **Texts are short, of equal length and written by authors with different writing styles:** This makes it impossible and useless to apply term extraction techniques such as frequency analysis, etc. The terms we obtained through software packages such as DataDetective and Clementine were not satisfying either. Advanced NLP techniques were tried out in the past but failed because of the shortness of textual reports. Relationships between persons, documents and networks play an essential role but are hard or impossible to automatically distil from the texts, etc. An essential element to the success of a text mining approach is a high-quality thesaurus. We chose for a semi-automated thesaurus-building approach and complemented it with following automated methods to maintain
quality: word stemming, using synonym lists, spell checking, etc. We also use Named Entity Recognition for extracting license plates, suspect names, etc.

• Contexts of words and phrases are essential for interpretation of the data: The interpretation of words, phrases, etc. is often strongly dependent on the context in which they are used. For example, during a police patrol, an officer checks a new prostitute and asks her about the scars on her legs. He wrote down that she told that during her childhood she was sexually abused and beaten but then suddenly their conversation was interrupted by the pimp who brought her food. The attributes “sexually abused”, “pimp”, “bring food”, “scars” may lead to a false positive although this document alone is far from sufficient to start a forced prostitution case. Moreover, multiple persons are mentioned in many reports and their roles such as suspect, victim or both are difficult to distill from these reports, even with advanced NLP instruments. Also some attributes should be solely attributed to one person but often it is impossible to automatically infer to which one. Human decision making remains necessary.

• Only little information is available per person and the target group is a small fraction of the total population. The information we have is naturally incomplete since the reports written by officers describe only a part of the reality, namely that part observed by them during their work. The police does only have information about fragments of these persons’ lives based on which they decide whether or not this person might be interesting. Given the incompleteness of the information, one should take caution with fully automated decision making and leave this critical task to specialized and trained police officers who can judge whether or not sufficient evidence is available and slightly vary their decision criteria bared on their years of experience in the field. The focus of our approach
lies on the development of an early warning system that helps to reduce the pool of potential suspects, gather all information about them in one visual picture that supports the officers in efficient decision making on which case should or should not receive special attention.

- There have been no labels assigned to individuals or reports: our data did not contain any labelled individuals. Moreover, the target group is a small fraction of the total population. Training an automated classifier became impossible. To identify phrases referring to forced prostitution during thesaurus construction we had to rely on expert knowledge.

- The underlying concepts of the domain are unclear: the conceptual relationships between persons, documents, locations, etc. were of significant importance and had to be made visible to officers since they are essential to decision making. Many visualization techniques such as Self Organizing Maps only give a distribution of the persons, documents, etc. but the relations between them are not explicitly shown.

A potential issue and avenue for future research is scalability of the approach. Lattice diagrams are only readable until a certain number of concepts. Therefore, in each lattice we must limit the number of attributes and/or objects. This was however not a serious problem in our case since we were working with a stationary dataset, in which only a small part of the individuals was of interest. For other types of crimes such as credit card fraud detection, where we are dealing with massive amounts of fast changing data, FCA should be complemented with other visualization techniques such as Emergent Self Organising Maps. Another issue is the potential evolvement over time of the terms and phrases used by officers to describe their observation. Our thesaurus may become incomplete and maintenance methods should be developed to keep our system up to
date on the long term.

8. Conclusions

Textual documents contain a lot of useful information that is rarely turned into actionable knowledge by the organizations that own these data repositories. In this paper we proposed an approach to knowledge discovery from unstructured texts using FCA. The semi-automated exploration process is essentially human-centred. With this paper we argued for the discovery capabilities of FCA acting as an information browser in the hands of human analysts. The tool was shown to help analysts proceed with knowledge expansion by progressively looping through four main phases. We demonstrated the method using a real-life case study with data from the Amsterdam-Amstelland police. Police forces in the Netherlands dispose of a large amount of such textual reports that may contain early warning indicators that can help to proactively identify persons involved in illegal activities. Since the observations of one suspect are typically made by different officers who are not aware of each other’s work, spread over multiple databases, etc. automated analysis techniques such as FCA can be of significant importance for police forces who are interested in the proactive identification of perpetrators. FCA is one of the few techniques that can be used to interactively expose, investigate and refine the underlying concepts and relationships between them in a large amount of data. In this paper we described our successful application of FCA to find suspects of human trafficking and forced prostitution in the Amsterdam-Amstelland police district. From 266,157 observational reports we distilled multiple suspicious cases of which 5 have been described in this paper. For each of these persons and networks a document was composed, containing all the indicators and evidence available. Permission to use special investigation techniques was obtained by the anti-human trafficking team based on the identified indications. For each case we exposed,
phone-taps, observation teams, etc. indeed confirmed the suspect’s involvement in human trafficking and forced prostitution. We believe that in making the shift from reactive police work, where action is only undertaken when a victim comes to talk directly to the police, to the pro-active identification of suspect’s, FCA can play an important role. Interesting avenues for future research include applying concept selection techniques such as stability indices (Kuznetsov and Ignatov 2007). We will also investigate the potential of automated regression and classification techniques for assisting in the identification of relevant suspects (Dejaeger et al. 2012a, 2012b).

Acknowledgements

The authors would like to thank the police of Amsterdam-Amstelland for granting them the liberty to conduct and publish this research. We are grateful to the anti-human trafficking team of the Amsterdam-Amstelland police for their guidance and support. We are also grateful to Police Chief Hans Schönfeld for his continued support.

References

Hughes, D.M. and Denisova, T. (2003), Trafficking in women from Ukraine, U.S. Department of Justice research report.

