

USING FORMAL CONCEPT ANALYSIS FOR VERIFICATION OF PROCESS –
DATA MATRICES IN CONCEPTUAL DOMAIN MODELS

Jonas Poelmans1, Guido Dedene1,2, Monique Snoeck1, Stijn Viaene1,3
1 KULeuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven, Belgium

2 Universiteit van Amsterdam Business School, Roeterstraat 11, 1018 WB Amsterdam, The Netherlands
3 Vlerick Leuven Gent Management School, Vlamingenstraat 83, 3000 Leuven, Belgium

{jonas.poelmans, monique.snoeck, guido.dedene}@econ.kuleuven.be
stijn.viaene@vlerick.be

ABSTRACT
One of the first steps in a software engineering process is
the elaboration of the conceptual domain model. In this
paper, we investigate how Formal Concept Analysis can
be used to formally underpin the construction of a
conceptual domain model. In particular, we demonstrate
that intuitive verification rules for process-data matrices
can be formally grounded in FCA theory. As a case study,
we show that the well-formedness rules from MERODE
are isomorphic to the clustering rules in Formal Concept
Analysis, and that the relationships in the class diagram
are isomorphic to the subconcept-superconcept
relationship in FCA.

KEY WORDS
Formal Concept Analysis, MERODE, conceptual domain
modeling, OOSSADM, CRUD

1. Introduction

The complexity of most information systems is caused by
the complexity of the reality they have to deal with and
statements about the required functionality always have
some underlying assumption about the real world.
Therefore, it is useful to build a real world model prior to
the development of an information system [1]. High
quality conceptual models are critical to the success of
system development efforts [2].

Unfortunately, developers often encounter problems
while elaborating the business domain model [3]:
inconsistencies arise between static and dynamic
schemas, object types are missing in the business domain
model, the business domain model contains errors, etc.
Quality has been identified as one of the main topics in
current conceptual modeling research [4]. Despite this
importance, algorithmic approaches to assure conceptual
model quality are virtually nonexistent [5]. In [6], the
authors suggested to use CRUD-matrices to analyze
consistency in conceptual models. However, this topic
was only briefly discussed. Can we mathematically
ground this type of analysis? Can we find an algorithmic
approach to detect missing object types? Can we benefit

from an algorithmic method for enforcing consistency in
business models? Can we mathematically analyze
completeness of models?

In this paper, we explore the possibilities of using a
technique known as Formal Concept Analysis (FCA) [7,
8] for mathematically underpinning the construction and
analysis of conceptual models. FCA arose twenty-five
years ago as a mathematical theory [9]. In the domain of
software engineering, FCA has typically been applied to
support software maintenance. It has been used for
reorganizing existing class hierarchies and for refactoring
and modifying existing code [10, 11]. FCA has also been
used for identifying class candidates in legacy code [12].
In requirements analysis, FCA has been used to identify
class candidates in use case descriptions [13, 14] and to
reconcile descriptions written by different stakeholders
using controlled vocabulary and grammar [15, 16]. More
recently FCA has also been used in combination with
ontology. Cimiano investigates how FCA and ontologies
may complement each other from an application point of
view [17]. Bain applies FCA to identify structure in
theories [18]. Within the area of design, FCA has been
applied to classes and methods [19]. However it has never
been applied to the earlier stage of conceptual modeling.
In this paper we apply FCA to the combination of object
types and processes to validate the relationships captured
by the class diagram and to identify missing object types.

The remainder of this paper is composed as follows. In
section 2, we introduce the research question. As FCA is
in essence a matrix-technique, we discuss the three most
frequently used matrix techniques in conceptual domain
modeling: the CRUD-matrix from Information
Engineering, the entity-event table from OOSSADM and
the object-event table from MERODE. Subsequently we
discuss how FCA could be used as formal foundation for
well-formedness rules for process-data matrices in
conceptual modelling. In section 3, we introduce the
pivotal notions of FCA theory. As MERODE is the only
method that defines well-formedness rules for a CRUD-
like matrix, in section 4, we discuss the essentials of
MERODE. In section 5, the close relationship between
FCA and these well-formedness rules is investigated.
Section 6 concludes the paper.

2. Research Question

In this section, we elaborate on the three most frequently
used matrix techniques in object-oriented conceptual
domain modeling.

The Create, Read, Update and Delete (CRUD)-matrix
was initially introduced in information engineering by
Martin [20]. The purpose of this matrix is to illustrate the
relationships between objects and the processes in which
they participate. A process may either create, read, update
or delete an object.

The Object-Oriented Structured Systems Analysis and
Design Methodology (OOSSADM) builds on the Jackson
Systems Development approach [2]. In this approach,
entities impose sequence constraints on business events
by means of a sequence diagram. As events can appear in
the sequence diagrams of multiple entities, Robinson [21]
introduced the notion of Entity-Event matrix to capture
the entities that are affected by each business event.

Model driven, Existence dependency Relation, Object
oriented DEvelopment (MERODE) is an object-oriented
analysis and design methodology [22, 23] and is
complementary to UML [24], in that it offers a precise
and computationally complete methodology. MERODE
represents an information system through the definition of
business events, their effect on enterprise objects and the
related business rules.

Similarly as in OOSSADM, business events are
identified as independent concepts, with an object-event
table defining which types of objects are affected by
which types of events. Each object type has a method for
each event type in which it may participate. Such method
implements the object’s creation, its state changes (i.e.
changes to attribute values) or its deletion as the
consequence of an event of the corresponding type.

The events in OOSSADM and in MERODE can be
considered as elementary processes that have an effect
(create, modify or update) on at least one, but possibly
more object types. Hence, in its most simple form, these
three tables indicate which objects participate in which
elementary processes1. A convenient way for representing
such table is by a cross table, which is a rectangular table
of which the rows are labeled by the objects, the columns
labeled by events and a cross in an entry indicates that the
corresponding object participates in the corresponding
event.

One major difference between the three approaches is
the way a table is filled. In all three approaches, the table
is initially filled on the basis of classical analysis:
interviews with key users and logical reasoning.
Subsequently, the table should be verified against some
quality criteria. Typically existing criteria will attempt to
identify missing rows, columns or crosses by means of
general and intuitive "rules of thumb" such as: for each

1 In the remainder of this paper, we will call these elementary

processes "events". It should however be noted that these
"events" do not only symbolise the initiating trigger, but also
the processing that is activated as response to the event.

object type, there should be at least one process that
creates objects of that type; each process should at least
read some data, etc. Of the three modeling approaches,
MERODE is the only approach that defines formal
criteria for the completeness and well-formedness of the
table.

The CRUD-matrix, Entity-Event and Object-Event
table have a clear relationship with a single-valued formal
context from FCA (see section 3): object or entity types in
a conceptual model can be mapped to "objects" in FCA
and events can be mapped to "attributes" in FCA. Formal
Concept Analysis is a recent mathematical technique that
can be used as an unsupervised clustering technique. The
starting point of the analysis is a table consisting of rows
(i.e. objects), columns F (i.e. attributes) and crosses (i.e.
relationships between objects and attributes).

The goal of the research is to investigate the
possibilities of using FCA as grounding theory assisting
in the development of conceptual domain models. The
core contributions of this paper are as follows. First, we
show that conceptual modeling can be considered as an
application of FCA. FCA provides a sound mathematical
foundation for assisting modelers in the elaboration of
conceptual domain models. Moreover, it provides a
formal underpinning for the central notion of concept.
Second, we show that the well-formedness rules from
MERODE - obtained by reasoning on the semantics of
existence dependency, on common sense reasoning and
on process algebra considerations – are an inherent part of
the FCA lattice construction algorithm. Whereas in
MERODE, the consistency requirements were statically
modeled as meta frame for conceptual models, FCA
provides an algorithm that automatically verifies whether
the association matrix and existence dependency graph
are correct and consistent. Starting from an Object-Event
table that is well-formed according to the MERODE-
rules, we apply the clustering principles of FCA and
demonstrate that FCA comes up with a ordering of
concepts that is isomorphic to the ordering imposed by
the existence dependency relationship used in MERODE.
Hence, we can postulate that FCA offers a theoretical
foundation for the consistency rules of MERODE.
Reversely, a principal result is that it is possible in
conceptual object-oriented analysis to obtain a concept
lattice by using the MERODE rules. In this way we
demonstrate that FCA is a valid instrument for the formal
underpinning of matrix verification techniques [23].

3. FCA essentials

Formal Concept Analysis is a recent mathematical
technique that can be used as an unsupervised clustering
technique. Objects participating in the same set of events
are grouped in concepts. The starting point of the analysis
is a table consisting of rows M (i.e. objects), columns F
(i.e. attributes) and crosses T M F⊆ × (i.e. relationships
between objects and attributes).

The mathematical structure used to reference such a
cross table is called a formal context (M, F, T).

Table 1. Example of a formal context

 enter leave acquire classify borrow renew return sell lose
Member X X X X X X
Book X X X X X X X
Loan X X X X

An example of a cross table is displayed in Table 1. In

the latter, objects are related (i.e. the crosses) to a number
of events (i.e. the attributes); here an object is related to
an event if the object participates in the event. Given a
formal context, FCA then derives all concepts from this
context and orders them according to a subconcept-
superconcept relation. This results in a line diagram
(a.k.a. lattice).

The notion of concept is central to FCA. The way FCA
looks at concepts is in line with the international standard
ISO 704, that formulates the following definition: A
concept is considered to be a unit of thought constituted
of two parts: its extension and its intension [7. 8]. The
extension consists of all objects belonging to the concept,
while the intension comprises all attributes shared by
those objects. Typically, one would think here about
informational attributes but one can just as well consider
behavioral attributes such as reaction to events or
participation in processes. So let us illustrate the notion
of concept of a formal context using the data in Table 1.
For a set of objects O M⊆ , the events that are common
to all objects o in the set O can be identified, written

()Oσ , via:
() { | : (,) }A O f F o O o f Tσ= = ∈ ∀ ∈ ∈

Take for example the set O M⊆ consisting of objects

Member, Book and Loan. This set O of objects is closely
connected to a set A consisting of the attributes “borrow”,
“renew”, “return” and “lose”, being the events shared by
the objects in O. That is:

({Member, Book, Loan}) = {borrow, renew, return,
lose}

Reversely, for a set of attributes A, we can define the

set of all objects that share all attributes in A:
() { | : (,) }O A i M f A i f Tτ= = ∈ ∀ ∈ ∈

If we take as example the set of events of Loan,

namely {borrow, renew, return, lose}, we get to the set O
⊆ M consisting of the objects Member, Book and Loan.
That is to say:

({borrow, renew, return, lose}) = {Member, Book,
Loan}

As one can see, there is a natural relationship between

O as the set of all objects sharing all attributes of A, and A
as the set of all attributes that are valid descriptions for all
the objects contained in O. Each such pair (O, A) is called
a formal concept (or concept) of the given context. The

set ()A Oσ= is called the intent, while ()O Aτ= is
called the extent of the concept (O, A).

Notice that concepts are always maximal in the sense
that the set O contains all objects that share the attributes
of A and that A contains all shared attributes of the objects
in O.

Moreover, there is a natural hierarchical ordering
relation between the concepts of a given context that is
called the subconcept-superconcept relation.

1 1 2 2 1 2 2 1(,) (,) ()O A O A O O A A⊆ ⇔ ⊆ ⊆∧

A concept d 1 1(,)O A= is called a subconcept of a

concept e 2 2(,)O A= (or equivalently, e is called a
superconcept of a concept d) if the extent of d is a subset
of the extent of e (or equivalently, if the intent of d is a
superset of the intent of e). For example, the concept with
intent “enter,” “leave,” “lose,” “return,” “renew,” and
“borrow” is a subconcept of the concept with intent
“lose,” “return,” “renew,” and “borrow.” With reference
to Table 1, the extent of the latter is composed of object
types Loan, Member and Book, while the extent of the
former is composed of object type Member.

The set of all concepts of a formal context combined
with the subconcept-superconcept relation defined for
these concepts gives rise to the mathematical structure of
a complete lattice, called the concept lattice (, ,)M F Tβ of
the context. The latter is made accessible to human
reasoning by using the representation of a (labeled) line
diagram. The line diagram in Figure 1, for example, is a
compact representation of the concept lattice of the formal
context abstracted from Table 1. The circles or nodes in
this line diagram represent the formal concepts. It
displays only concepts that describe objects and is
therefore a subpart of the concept lattice. The shaded
boxes (upward) linked to a node represent the attributes
used to name the concept. The non-shaded boxes
(downward) linked to the node represent the objects used
to name the concept. The information contained in the
formal context of Table 1 can be distilled from the line
diagram in Figure 1 by applying the following reading
rule: An object g is described by an attribute m if and only
if there is an ascending path from the node named by g to
the node named by m. For example, Member is described
by the attributes “enter”, “leave”, “lose”, “return”,
“renew” and “borrow”.

Retrieving the extension of a formal concept from a
line diagram such as the one in Figure 1 implies collecting
all objects on all paths leading down from the
corresponding node. In this example, the extension

associated with the upper node is {Loan, Book, Member}.
To retrieve the intension of a formal concept one traces all
paths leading up from the corresponding node in order to
collect all attributes. In this example, the second concept
in row two is defined by the attributes “ sell,” “ classify,”
“ acquire,” “ lose,” “ renew,” “ return,” and “ borrow.” The
top and bottom concepts in the lattice are special. The top
concept contains all objects in its extension. The bottom
concept contains all attributes in its intension. A concept
is a subconcept of all concepts that can be reached by
travelling upward. This concept will inherit all attributes
associated with these superconcepts. In our example, the
first node on the second row with extension {Member} is
a subconcept of the top node with extension {Loan,
Member, Book}.

Fig. 1. Line diagram corresponding to the context
from Table 1

In FCA, the concept generated by an object type P is

defined as () ((()), ())P P Pγ τ σ σ= and the concept
generated by an event type b as () ((), (()))b b bλ τ σ τ= .
In the line diagram, the nodes are labelled by the object
types which generate the corresponding concept C. These
are called the own object types of the concept C.

4. MERODE essentials

The MERODE methodology entails the notion of
existence dependency, which superimposes a lattice
structure (not to be confused with inheritance hierarchies)
on objects. The concept of existence dependency (ED) is
based on the notion of the “ life” of an object. The life of
an object is the span between the point in time of its
creation and the point in time of its end. Existence
dependency is defined at two levels: at the level of object
types or classes and at the level of object occurrences.
The existence dependency relation is a partial ordering on
objects and object types which is defined as follows.

Definition 1 (Existence Dependency): Let P and Q be

object types. P is existence dependent on Q (notation: P
← Q) if and only if the life of each occurrence p of type
P is embedded in the life of one single and always the
same occurrence q of type Q. p is called the dependent
object, (P is the dependent object type) and is existence

dependent on q, called the master object (Q is the master
object type).

The result is that the life of the existence dependent
object cannot start before the life of its master. Similarly,
the life of an existence dependent object ends at the latest
at the same time that the life of its master ends.

The notion of existence dependency is similar to the
notion of weak entity as introduced by Chen and the
notion of master entity from OOSSADM. In the ER-
notation [25] we can use the notion of a weak entity to
denote an existence dependent object type since the
existence of a weak entity depends on the existence of the
other entities it is related to by means of a weak
relationship [25]. Existence dependency is equivalent to
the notion of a weak relationship that is in addition
mandatory for the weak entity type.

MERODE requires all objects in the conceptual model
to be related through existence dependency relationships
only. The class diagram can therefore be represented as an
existence dependency graph.

Definition 2 (Existence Dependency Graph): Let M

be the set of object types in the conceptual schema. The
existence dependency graph (EDG) is a relation ← which
is a bag2 over M × M such that ← satisfies the following
restrictions:

1) An object type is never existence dependent on
itself:
 ∀ P ∈ M : (P,P) ∉ ←

2) Existence dependency is acyclic. This means that:
 ∀ n ∈ , n ≥ 2, ∀ P1, P2, ..., Pn ∈ M:

(P1,P2), (P2,P3),..., (Pn-1,Pn) ∈ ← ⇒ (Pn,P1) ∉ ←
Í is the non-reflexive transitive closure of ← :
Í ⊆ M × M such that
 1) ∀ P, Q ∈ M : (P,Q) ∈ ← ⇒ (P,Q) ∈ Í

2) ∀ P, Q, R ∈ M : (P,Q) ∈ ← and (Q,R) ∈ Í
 ⇒ (P,R) ∈ Í

In practice, MERODE also demands that the EDG is

fully connected.

Definition 3 (Object Event Table): The object-event

table is a table with one row for each object type and one
column for each event type. Each cell contains either a
blank or a ‘X’, which stands for “ participates in event” .
Let A be the universe of relevant event types. Then T ⊆
M × A × {' ', 'X'} such that ∀ P ∈ M, ∀ a ∈ A :

(P,a,' ') ∈ T or (P,a,'X') ∈ T
∀ P ∈ M : x(P) = {a ∈ A | (P,a,'X') ∈ T}
A = ∪ {x(P) | P ∈ M }

The OET is drawn as a matrix containing one row for

each object type and one column for each event type. An
'X' on a row-column point of intersection indicates that

2. Bags can contain the same element more than once (as

opposed to sets).

subconcept

superconcept

this particular event type is an element of x(P) (the
alphabet of P), where P is the object type corresponding
to the row.

In MERODE, a multiple of well-formedness rules for
object-oriented conceptual models are defined. These
rules were elaborated based on reasoning on model
quality (completeness and consistency), on object life
cycles and the formalization by means of process algebra
[23, 26]. We now discuss four of these rules that are
relevant for this paper. It should be noted that we take the
MERODE-rules as such and do not aim at motivating
these rules in this paper. For a motivation, the interested
reader is referred to [22, 23].

Rule 1: the relevant life of a domain object type has a
certain duration that can be delimited by two events: one
event when the object enters the domain of interest and
one event when the object leaves the domain of interest.
In other words, each object type should participate in at
least two event types: one for its creation and one for its
ending. For the object-event table, this means that each
row should contain at least two crosses.

Rule 2: each identified event type must be relevant for
at least one object type. For the object-event table, this
means that on each column there is at least one row with a
cross.

Rule 3 (propagation rule): a master object type is
always involved in all event types in which one of its
dependent object types participates. For example, a state
change of a loan, e.g. because of the return of the book,
automatically implies a state change of the related book
and member: the book is back on shelf and the member
has one copy less in loan. Therefore, if P is existence
dependent of Q, the alphabet of P must be a subset of the
alphabet of Q. This is called the propagation rule: P ← Q
⇒ x(P) ⊆ x(Q).

Rule 4 (contract rule): the contract rule says that when
two object types share two or more event types, the
common event types must be in the alphabet of one or
more common existence dependent object types:

∀ P, Q ∈ M : #(x(P) ∩ x(Q)) ≥ 2 and ¬(x(P) ⊆ x(Q)
or x(Q) ⊆ x(P)) ⇒ ∃ R1, ... Rn ∈ M: ∀ i ∈ {1,...,n}: Ri
← P,Q and x(R1)∪ ... ∪ x(Rn)= x(P) ∩ x(Q)
Consequence: x(P) ⊆ x(Q) ⇒ P ← Q

Notice that in MERODE the contract rule is only
applicable in case of two or more common event types
and that at least one of these must create and another one
must end the existence dependent object types. If there is
only one common event type MERODE does not require
the definition of an extra object type, because an object
type requires at least two event types. The argument for
two events is only based on the fact that a life cycle
requires a start and an end.

5. FCA and the object-event matrices

As explained before, the well-formedness rules from
MERODE were obtained by reasoning on the semantics
of existence dependency, on common sense reasoning and
on process algebra considerations. We reformulate each

of the MERODE-rules in FCA terms. The existence of
rules 1 and 2 can easily be motivated in FCA as well:
objects without attributes and attributes (events) that
belong to no objects can be considered as
incompletenesses in a conceptual model. For rule 3 it
appears that the principle of propagation of events along
existence dependency paths yields the result that the FCA
and EDG lattice are to a large extent isomorphic. In other
words, by imposing the well-formedness rules from
MERODE, we obtain a concept lattice in conceptual
object-oriented analysis. Reversely, the subconcept-
superconcept relationship of FCA turns out to be
isomorphic to the existence dependency relationship.
Finally, although rule 4 (contract rule) can be formulated
in FCA terms, FCA offers no substantiation for the
existence of this rule. This could be a reason to revise that
rule in MERODE.

5.1 Object-event table with empty row column

Consider the object-event table displayed in Table 2. The
lattice corresponding to Table 2 is displayed in Figure 2.
This table has an empty row, which means there is an
object type R that is involved in no event type at all. In
FCA, this implies that the object type R is part of the
extent of the top concept of the corresponding lattice. This
top concept has an empty intent. In other words, there is
an object type that has no attributes: it participates in no
events.

This table also has an empty column, which means
there is an event type e that involves no object type at all.
In FCA, this implies that the event type e is part of the
intent of the bottom concept of the lattice. This bottom
concept has an empty extent. In other words, there is an
attribute that belongs to no object.

Table 2. Object-event table with empty row and column

 a b c d e
P X X X
Q X X X
R

Fig. 2. Lattice corresponding to Table 2

MERODE considers these two cases as modeling

anomalies. Rule 1 demands that each object type
participates in at least two event types, one for the
creation of objects and one for the deletion of objects. So,

empty rows are not allowed. This MERODE rule can be
reformulated in FCA terms as follows.

Rule 1 in FCA terms:

Let P be an object type, L a concept and m, n events:
: (, ,)

:
 (, ,) : () , : , int()

Given M F T
P M

L M F T P ext L m n m n L m nβ
∀ ∈

∃ ∈ ∈ ∧ ∃ ∈ ∧ ≠

MERODE also demands that each event type is
relevant for at least one object type, so empty columns are
not allowed. This MERODE rule can be reformulated in
FCA terms as follows.

Rule 2 in FCA terms:

: (, ,)
: (, ,) : () int()

Given M F T
a F L M F T ext L a Lβ∀ ∈ ∃ ∈ ≠ ∅ ∧ ∈

5.2 Propagation rule and subconcept-superconcept
relation

In this section we demonstrate that because of the
propagation rule, every object in the EDG generates a
tuple ε(P) = (P*, x(P)), where P* is the set of all masters
of P and x(P) is the alphabet of P. Then ε(P) matches
with the concept in the FCA line diagram with label P and
moreover, if P is existence dependent on Q, then there is
an upward path in the FCA lattice from the node with
label Q to the node with label P.

Definition 3: Let ()Pε be defined as follows:

()Pε = (P*, x(P)), with P*= {X | (P,X) ∈ Í } { }P∪

Theorem 3: ()Pε is a concept in FCA
Proof:

()Pε = (P*, x(P))
To be proven: P* = τ(x(P)) = {Q ∈ M | ∀ e ∈ x(P) | e

∈ x(Q)}
Q ∈ P*
⇔ (P,Q) ∈ Í
⇔ x(P) ⊆ x(Q) (because of propagation rule)
⇔ ∀ e ∈ x(P): e ∈ x(Q)
⇔ Q ∈ τ(x(P))
QED

Theorem 4: if P ← Q then ()Pε is a superconcept of ()Qε

Proof
()Pε = ({P} ∪ {X | (P,X) ∈ Í } , x(P))

()Qε = ({Q} ∪ {Y | (Q,Y) ∈ Í } , x(Q))
(1):
P ← Q
⇒ (Q Í Y ⇒ P Í Y)
⇒ {X | (P,X) ∈ Í } ⊇ {Y | (Q,Y) ∈ Í }
⇒ ({P} ∪ {X | (P,X) ∈ Í }) ⊇ ({Q} ∪ {Y | (Q,Y) ∈ Í }
(2):

x(P) ⊆ x(Q) (because of propagation rule)
(1) + (2) ⇒ ()Pε is a superconcept of ()Qε
QED.

Theorem 5: if ()Pγ is a superconcept of ()Qγ in FCA
then P ← Q in MERODE

Proof
() ((()), ())P P Pγ τ σ σ=
() ((()), ())Q Q Qγ τ σ σ=

int(()) int(())P Qγ γ⇒ ⊆
⇒ x(P) ⊆ x(Q)
⇒ P ← Q
QED

Consider for example the object-event table in Table 1.

The set of events in which Loan participates is a subset of
the events in which Member participates. In MERODE,
Loan is said to be existence dependent of Member. In
FCA, the concept generated by Loan is a superconcept of
the concept generated by Member. As a consequence,
there is an upward leading path from the node with label
Member to the node with label Loan in the FCA lattice
(see Figure 1).

5.3 FCA and the contract rule

In this section we show how the object-event lattice may
help in identifying potentially missing object types. If the
object-event lattice contains a concept with two or more
own event types in its intent and zero own object types in
its extent, then we have a node in the line diagram with
attribute labels, but without object type labels attached to
the node. In MERODE, this indicates a situation where
the object types one level lower in the lattice share at least
two events that do not appear in the alphabet of one or
more common existence dependent object types. This
situation is in contradiction with the contract rule.

Theorem 6: If a lattice (, ,)O A Iβ contains a concept C
such that (ext())own C = ∅ and (int()) 2own C ≥ , then an
object type is missing in the object-event table according
to the MERODE contract rule.

Proof:
((, ,)) (()) | int() | 2C O A I ext C Cβ∈ ∧ = ∅ ∧ ≥
(1){ | (, ,) }L L O A I L Cβ∈ ∧ ⊂ = ∅

: { | (, ,) () int()}a A P Y O A I P ext Y a Yβ⇒ ∃ ∈ ∈ ∧ ∈ ∧ ∈ = ∅
⇒ violation of Rule 2

(2) , : , (, ,) () ()P Q O L R O A I L R L C R C P ext R Q ext Lβ∃ ∈ ∃ ∈ ∧ ≠ ∧ ⊂ ∧ ⊂ ∧ ∈ ∧ ∈
⇒ int(C) ⊆ x(P) and int (C) ⊆ x(Q) and ext(C) = ∅
⇒ |x(P) ∩ x(Q)| > 1 and ¬(∃ R1, ... Rn ∈ O: ∀ i ∈
{1,...,n}: Ri ← P,Q and x(R1)∪ ... ∪ x(Rn)= x(P) ∩ x(Q))
⇒ violation of contract rule
QED

Table 3. Expanded formal context
 enter leave acquire classify borrow renew return sell lose reserve cancel

Member X X X X X X X X
Book X X X X X X X X X
Loan X X X X

Table 4. Formal context with object type Reservation

 enter leave acquire classify borrow renew return sell lose reserve cancel
Member X X X X X X X X
Book X X X X X X X X X
Loan X X X X
Reservation X X

We now illustrate Theorem 6. Suppose that besides

borrowing books, it is also possible to reserve books that
are not on shelf. If a member changes her mind and
decides not to fetch the copy, she can cancel the
reservation. The events “ reserve” and “ cancel” are added
to the object-event table from Table 1. The resulting
object-event table is displayed in Table 3.

The shaded area of Table 3 shows the common event
types of Book and Member. Some of the events are also
in the alphabet of the dependent object type Loan but
“ reserve” and “ cancel” do not appear in the alphabet of a
common existence dependent object type. Figure 3
displays the corresponding lattice when the object type
Reservation is missing.

Fig. 3. Potential missing object type

The concept with own attributes “ reserve” and

“ cancel” does not have any own object types in its extent.
To fulfill the requirements imposed by the MERODE
contract rule, an object type that participates in the own
event types contained in the intent of the concept should
be added to the business domain model. This object type
must be existence dependent of the object types contained
in the extent of the concepts one level lower in the lattice.

In this case, according to the MERODE contract rule,
the two event types should either be included in the
alphabet of Loan or they should be included in the
alphabet of a new object type Reservation, dependent of
both Member and Copy. According to MERODE-
practices, the latter solution is to be preferred, because a
loan can occur without a reservation and a reservation can
occur without being followed by a loan. Figure 4 displays
the correct object-event lattice.

Fig. 4. Correct object-event lattice

However, FCA does not provide any formal grounding

for the contract rule and in particular for the requirement
that the contract rule should only be applicable in case of
two or more common event types. One could for example
already consider to create an additional object type even if
there is a node with only one event type and no own
object type. Also, a node with a potential missing object
type as in Fig.3, has already a non-empty extension. So,
there is no immediate reason to add an object in that point
of the lattice. As a result, FCA does not offer a formal
foundation for this rule in MERODE. In fact, in
MERODE, this rule was created for deadlock verification
purposes [26], rather than to actually identify missing
object types. The fact that FCA does not immediately
support this rule, could motivate a revision of this rule.

5.4 Verification process

The results of this paper can be used for formal
verification purposes as part of a larger software
engineering process. The verification process using FCA
can be seen as an iterative learning loop. In each iteration,
an existing process-data matrix is used to automatically
derive an FCA lattice. As we have shown in the previous
sections, this lattice can be considered as a conceptual
domain model that obeys the wellformedness rules as
imposed by MERODE. The lattice structure can then be
used for formal verification purposes, i.e. to detect
anomalies, missing concepts, missing object types, etc.
These changes can be implemented in the existing

process-data matrix and a new iteration through the
learning loop is started until a correct model is obtained.

6. Conclusions

In this paper, we proposed a novel application of FCA,
namely as a formal foundation for the verification of
matrices used in conceptual domain modeling. The well-
formedness rules for the object-event table in MERODE
were developed by reasoning on the semantics of
existence dependency, on common sense reasoning and
on process algebra considerations. We showed that by
imposing the well-formedness rules from MERODE, we
obtain a domain model that has all the properties of a
concept lattice. This substantiates the well-foundedness of
these rules. Reversely, if FCA is used to cluster an object-
event matrix, the concepts identified by FCA can easily
be mapped to object types in an enterprise model. In
addition, the subconcept-superconcept relationship
between FCA-concepts can be mapped to the existence
dependency relationship in the enterprise model. And
finally, we showcased that one of the rules that was
created purely for deadlock verification purposes, can
indeed not be grounded in the theory of Formal Concept
Analysis. In this way, we demonstrated the applicability
of FCA as a theory to aid in the development of sound
conceptual modeling methods.

The theory of FCA can also be applied to the is-a
relationship between concepts. Future research will
investigate the application of FCA to generalisation/spe-
cialisation lattices and how this can be combined with a
CRUD-like matrix. Yet we already dare to postulate as a
general conclusion that FCA is a valid instrument for
formalizing the construction of a conceptual domain
model. In the future, the work presented in this paper will
be empirically validated by applying it to a real life case
study using data from a banking company.

Acknowledgements
Jonas Poelmans is Aspirant of the “ Fonds voor
Wetenschappelijk Onderzoek – Vlaanderen” (FWO) or
Research Foundation – Flanders.

.
References

[1] Wand, Y., Weber, R.A., Research commentary: information
systems and conceptual modeling - a research agenda,
Information Systems Research, 13 (4), 2002, 363–376.
[2] Jackson, M.A. System development. Prentice Hall, 1983
Englewood Cliffs, New Jersey.
[3] Paige, R., Ostroff, J., The Single Model Principle, Journal of
Object Technology, vol (5), 2002, 63–81.
[4] Moody, D.L., Theoretical and practical issues in evaluating
the quality of conceptual models: current state and future
directions. Data & Knowledge Engineering, 55, 2005 243-276.
[5] Poels, G., Nelson, J., Genero, Marcela, Piattini, M. (2003)
Quality in Conceptual Modeling new research directions. A.
Olivé (Eds): ER 2003 Ws, LNCS 2784, 243-250.
[6] Lonsdale Systems, Matrix Analysis, available from
http://www.lonsdalesystems.com/dokuwiki/doku.php?id=trainin

g:requirements_analysis:requirements_analysis, accessed
02/2009.
[7] Stumme, G., Formal Concept Analysis on its Way from
Mathematics to computer science. Proc. 10th Intl. Conf. On
Conceptual Structures (ICCS 2002), LNCS, Springer,
Heidelberg.
[8] Ganter, B., Wille, R., Formal Concept Analysis:
Mathematical foundations. Springer, Heidelberg, 1999.
[9] Wille, R. Restructuring lattice theory: an approach based on
hierarchies of concepts. I. Rival (ed.). Ordered Sets. Reidel.
Dordrecht-Boston, 1982, 445-470.
[10] Snelting, G. Software reengineering based on concept
lattices. Proc. IEEE 4th European Conference on Software
Maintenance and Reengineering, 2000, 3-12,
[11] Snelting, G., Tip, F., Reengineering class hierarchies using
concept analysis. Proc. of ACMSIGSOFT Symposium on the
Foundations of Software Engineering, 1998, 99-110.
[12] Tonella, P., Antoniol, G. Object-oriented design pattern
inference. Proc. of CSM, 1999, 230-240.
[13] Düwel, S. (1999) Enhancing system analysis by means of
formal concept analysis. Proc. conference of Advanced
information systems engineering 6th doctoral consortium,
Heidelberg, Germany, 1999.
[14] Düwel, S., Hesse, W. Identifying candidate objects during
system analysis. Proc. CAiSE’98/IFIP 8.1 3rd Int. Workshop on
Evaluation of Modeling Methods in System Analysis and Design
(EMMSAD), 1998.
[15] Richards, D., Boettger, K. A controlled language to assist
conversion of use case descriptions into concept lattices. Proc.
of 15th Australian joint conference on artificial intelligence,
LNAI, vol. 2557, 2002, 1-11.
[16] Richards, D., Boettger, K., Fure, A., Using RECOCASE to
compare use cases from multiple viewpoints. Proc. of the 13th
Australian Conference on Information Systems ACIS 2002,
Melbourne.
[17] Cimiano, P., Hotho, A., Stumme, G., Tane, J. Conceptual
Knowledge Processing with Formal Concept Analysis and
Ontologies. Proc. of ICFA, LNAI 2961, 2004, 189-207.
[18] Bain, M. Inductive Construction of Ontologies from Formal
Concept Analysis. Proc. of AI, LNAI 2903, 2003, 88-99.
[19] Godin, R., Mili, H., Mineau, G.W., Missaoui, R., Arfi, A.,
Chau, T.-T., Design of class hierarchies based on concept
(Galois) lattices. Theory and Application of Object Systems
(RAPOS), 4(2), 1998, 117-134.
[20] Martin, J., Information Engineering. Prentice Hall, 1990,
Englewood Cliffs, New Jersey.
[21] Robinson, K., Berrisford, G., Object-Oriented SSADM.
Prentice Hall, 1994, Englewood Cliffs, New jersey.
[22] Snoeck, M., Dedene, G., Verhelst, M., Depuydt, A.M.
Object-Oriented Enterprise Modeling with MERODE. Leuven
University press, 1999.
[23] Snoeck, M., Dedene, G. Existence dependency. The key to
semantic integrity between structural and behavioral aspects of
objects types. IEEE Transactions on Software Engineering,
24(4), 1998, 233-251.
[24] OMG, Unified Modeling Language, Available from
www.omg.org/uml, accessed 10/2008.
[25] Chen, P.P. The entity relationship approach to logical
database design. QED information sciences, Wellesley (Mass.),
1977.
[26] Dedene G., Snoeck M., Formal deadlock elimination, Data
& Knowledge Engineering, 15(1), 1995, 1-30.

